Серная кислота способ применения

Содержание
  1. Все что необходимо знать о серной кислоте(H2SO4)
  2. Характеристика
  3. Классификация
  4. Технологии получения
  5. Контактный метод
  6. Нитрозный метод
  7. В каких отраслях находит применение
  8. Соли серной кислоты и область их применения
  9. История изучения
  10. Производство в России
  11. Особенности транспортировки
  12. Вред для человеческого здоровья
  13. Признаки отравления
  14. Первая помощь и лечение
  15. Интересные факты о серной кислоте
  16. Серная кислота — Все что необходимо знать
  17. Где применяется серная кислота
  18. Разбавленная серная кислота – 7 типов солей
  19. История. Кто начал использовать раствор серной кислоты
  20. Как производят серную кислоту в наше время
  21. Основные производители серной кислоты в России
  22. Транспортировка вещества серная кислота
  23. В чем опасность серной кислоты для человека
  24. Варианты первой помощи при отравлении серной кислотой
  25. Ликвидация разлива серной кислоты

Все что необходимо знать о серной кислоте(H2SO4)

Характеристика

Обладает сильными свойствами и считается мощным окислителем. Поскольку на один моль SO3 приходится один моль Н2О, её принято относить к моногидратам. Она образовывает кислые (бисульфаты) и средние (сульфаты) соли. Для усиления действия и преобразования кислоты в двухосновную, в результате чего она получит два атома водорода, потребуется взаимодействие с водным раствором. А при реакции с простой водой в больших объёмах начнёт выделяться тепло.

Основное свойство H2SO4 – гигроскопичность, поэтому её часто используют для поглощения влаги из воздуха. В течение этого процесса также происходит выделение тепла. Температура кипения зависит от степени насыщенности. При 98%-ой концентрации, достигается максимум, который составляет 330 °C, при этом возникает распад на H2O и SO3. Температура плавления – 10,38 °C, плотность – 1,84 г/см3.

Состояние жидкости влияет на то, как она изменяет другие элементы при взаимодействии с ними. Все металлы, стоящие в электрохимическом ряду активности, включая серебро, поддаются окислению при 100%-ой концентрации. Разбавленная H2SO4 окисляет все металлы, находящиеся в электрохимическом ряду активности левее водорода, однако платина и золото не состоят в этом списке.

Наблюдаются изменения при взаимодействии с органическими соединениями и неметаллами, итогом которого становится преобразование некоторых из них в уголь. H2SO4 способна растворять SO3, образуя олеум.

Классификация

H2SO4 выше 40% называется концентрированной. Она известна как сильный окислитель и при контакте с серебром или палладием растворяет их. Во время нагревания демонстрирует окислительно-восстановительные качества. Концентрация разбавленных растворов не превышает 40%. Они отличаются меньшей активностью и способны взаимодействовать с медью и латунью.

Чтобы преобразовать концентрированную смесь в разбавленную, более тяжёлую жидкость нужно смешать с H2O. Важно добавлять именно кислоту в воду, соблюдая осторожность. Если сделать наоборот, образуется кипение и токсикологические брызги.

Технологии получения

Когда люди только начали самостоятельно обрабатывать купоросное масло, масштаб его потребления не превышал десятки литров. В настоящее время промышленные предприятия каждый год выпускают и потребляют несколько миллионов тонн этого продукта. Мировыми лидерами в современном мире являются Китай (60 млн т) и США (30 млн т).

Традиционными методами, используемыми в промышленности, выступают контактный и нитрозный.

Контактный метод

Широко применяется во многих государствах. Его популярность обеспечивают следующие преимущества:

  • Соответствие всем заявленным характеристикам, за счёт чего удовлетворяются требования потребителей.
  • Почти не наносит ущерба окружающей среде.

Основу представляет такое сырьё, как:

  • Пирит (колчедан).
  • Сера.
  • Оксид ванадия (катализатор).
  • Сероводород.
  • Сульфиды различных металлов.

Прежде чем приступить к работе, сырьё подвергают обработке. Пирит измельчается через устройства для дробления. За счёт измельчения рабочие добиваются увеличения скорости реакции, поскольку площадь соприкосновения частиц становится больше.

На следующей стадии колчедан очищают, погружая в чаны с водой и перемешивая. Пустая порода, земля и ненужные примеси поднимаются на поверхность, и их становится легче удалить. Работа проходит через несколько фаз:

  • Колчедан отправляется в печь и обжигается при 800 °C не более. В этот момент сырьё пребывает в подвешенном состоянии, поэтому снизу в камеру поступает воздух. На этом этапе выделяются водяные пары, О2 и SO2, лишние отходы уничтожаются.
  • Ванадиевый катализатор способствует выделению тепла. Процесс сопровождается давлением на компоненты. На этом шаге температура равняется 420°C — 550°C. Происходит каталитическое окисление, и диоксид серы преобразуется в ангидрид серной кислоты.
  • В поглотительной башне ангидрит поглощается, затем появляется олеум H2SO4, которую разливают в особые ёмкости.

В течение всей работы выделяется много тепла, которое принято использовать в качестве вспомогательного источника энергии. Стоит отметить, что эта технология подразумевает производство, не оставляющее отходов.

Нитрозный метод

Нитрозная технология бывает двух видов: камерная и башенная. Преимущества данного подхода состоят в том, что он не требует больших денежных затрат или сложного технологичного оборудования, а также гарантирует переработку диоксида серы.

Но имеются и минусы. В конечном итоге производитель получает 75%-ую концентрацию, которая заметно уступает по качеству тому, что выходит при контактном способе. В составе наблюдается содержание оксида азота, железа и иных примесей. Возврат оксидов азота осуществляется не полностью. Нитрозный способ вреден для экологии, поскольку допускает значительные выбросы токсинов в атмосферу. Тем не менее, этот подход всё равно остаётся довольно-таки популярным.

Исходный материал – сернистый газ. Его преобразование в H2SО4 осуществляется в процессе окислительной реакции с двуокисью серы и присоединения воды. Нитрозная техника не обходится без добавления окислов азота, поскольку двуокись серы не вступает в прямой контакт с кислородом. В течение данного процесса высшие окислы азота превращаются в окись азота NO. Позднее окись азота NO снов окисляется кислородом, преобразуясь в высшие окислы.

Читайте также:  Классы электротехнических изделий по способу защиты человека от поражения электротоком

В каких отраслях находит применение

Ежегодно человечество потребляет около 200 миллионов тонн, в большинстве случаев для выпуска продукции химического происхождения и в сельском хозяйстве. Сегодня H2SO4 применяют для получения:

  • Минеральных удобрений, для этого она берётся в чистом 100%-ом виде.
  • Дымообразующих и взрывчатых веществ.
  • Медикаментозных средств.
  • Органических и неорганических соединений.
  • Красок.
  • Ненатуральных изделий.

Помимо этого она помогает эффективно удалять окалину и ржавчину. Восстанавливает алюминий при изготовлении цветных металлов. Её наносят на металлические поверхности перед покрытием медью или хромом, удаляют нежелательные частицы и примеси из нефтепродуктов и обрабатывают скважины. Компонент приносит пользу, если возникает необходимость повысить детонационную стойкость бензина и моторных масел.

Это далеко не все области применения. Вещество выполняет функции эмульгатора при приготовлении пищевой продукции, помогает эффективно устранять отходы в воде. Считается действительно необходимым компонентом в индустрии, замену которой трудно найти. Говоря об этом продукте, Дмитрий Менделеев отмечал, как часто к его помощи прибегают в техническом производстве, и что без него невозможно и невыгодно заниматься приготовлением других веществ.

Соли серной кислоты и область их применения

История изучения

Начало исследований было заложено ещё в Древней Греции, когда учёные заинтересовались происхождением медного купороса и его особенностями. Купорос находил применение как в медицинской практике, так и в металлургии. Первые достижения датируются XIII веком. Согласно записям алхимиков того периода для этого прибегли к нагреванию алюмокалиевых квасцов. Изучив природу квасцов, в XV веке учёные смогли приступить к следующей стадии опытов. Чуть позже, во времена Средневековья в Европе, вещество было известно как «купоросное масло», однако название было изменено на привычную современным людям «кислоту».

На территории Руси масло появилось в 1600-х годах, чаще всего его ввозили торговцы из-за рубежа. В тот же временной период Иоганном Глаубером был изобретён совершенно иной подход к работе с материалами. Добиться желаемого Глауберу удалось в результате горения нитрата калия и самородной серы в присутствии водных паров. Аналогичный метод был также использован в первой половине 1700-х годов лондонским аптекарем Уордом Джошуа, который решил производить масло в больших масштабах. В то время в H2SО4 нуждались алхимики, фармацевты и специалисты по отделке редких металлов. В небольших объёмах её использовали для изготовления специальных спичек с содержанием хлората калия. .

Следом за Джошуа к производству приступил Джон Робак из Англии, несколько адаптировав технику. Вместо стеклянных резервуаров он взял освинцованные камеры крупного размера, поскольку они были дешевле. Нововведения Робака позволяли получить 65%-ный раствор. Приёмы англичанина сохраняли популярность в течение двухсот лет. 78%-ая концентрация появилась благодаря химикам из Англии и Франции Гловеру и Гей-Люссаку. В отличие от прошлого варианта этот оказался неподходящим для создания красителей.

Новые техники были разработаны в начале XIX века. На первых порах для этого брали азот, такой способ вскоре стал именоваться «нитрозным». Также для быстрого протекания реакции обращались к платине. Только в тридцатые годы XIX века Перегрином Филипсом был запатентован экономичный путь обработки оксида серы (VI) и концентрированного раствора. А в 1864 году был запущен выпуск природных фосфорных удобрений.

К концу 1800-х годов европейские страны наладили выпуск продукции в количестве до одного миллиона тонн, а лидирующие позиции в поставке заняли Англия и Германия. На их долю приходился 71% от общего объёма. В России корпорации подобного рода открылись после 1805 года в Москве.

Производство в России

Особенности транспортировки

При транзите следует соблюдать осторожность из-за резких ядовитых свойств продукта. Он взрывоопасен и относится к восьмому классу опасности, который включает ядовитые и коррозионные грузы. Допущение перевозчиком грубых ошибок при транспортировке, ставит под угрозу не только людей, но и экологию.

Перевозка происходит при соблюдении правил, гарантирующих безопасность населения. Требуется подобрать устойчивую ёмкость для транзита. Цистерны должны быть изготовлены из сплавов, которые не разрушатся под воздействием ядов. Для перевозки опасных токсинов подойдут сернокислотные химические резервуары. При необходимости поддерживать температуру, как с дымящейся жидкостью, подбираются цистерны-термосы. Для обычного груза подойдёт сернокислотная канистра.

Транспортировка допускается лишь на автомобилях со специальной маркировкой, предупреждающей об опасном грузе. Перевозить цистерны имеют право водители, получившие свидетельство АДР, подтверждающее их компетентность. Они не ограничены во времени при перевозке, поскольку обязаны соблюдать скоростной режим для исключения возможности попадания в аварию. Чтобы избежать ситуаций, создающих угрозу жизни населения, водитель должен ехать по специально-разработанному маршруту, исключающему места большого скопления людей и производственные объекты.

Вред для человеческого здоровья

Токсичная жидкость угрожает здоровью человека не только из-за риска попадания капель на кожные ткани, она может нанести вред внутренним органам поскольку в её состав входит не менее едкий сернистый газ. Ей характерна чрезвычайная агрессивность, а входящий в состав мышьяк усиливает признаки отравления. Безвредной дозой содержания H2SО4 в воздухе считается 0,3 мг на 1 кв. м.

При неосторожном обращении могут пострадать кожа, дыхательная система и слизистые оболочки. Нередко появляются бронхит, ларингит и трахеит. Полученные ожоги имеют ярко-выраженную симптоматику и долго заживают. Если своевременно не обратиться к врачу, поражение тканей может привести к смерти пострадавшего. Опасная доза, угрожающая жизни – 0,18 см на 1 лит, при попадании внутрь — 5 миллиграммов.

Читайте также:  Моделирование по способу построения

Признаки отравления

Первая помощь и лечение

При контакте с серной кислотой важно в первую очередь вызвать скорую помощь. До того как приедут врачи, пострадавший может самостоятельно облегчить своё состояние. Если химический продукт попал внутрь, нужно промыть желудок тёплой водой, а затем выпить 100 г оливкового или подсолнечного масла маленькими глотками. Для большей пользы можно проглотить немного льда или выпить молока. Это поможет снизить содержание H2SО4.

Если жидкость попала на слизистую оболочку глаз, необходимо промыть их проточной водой. До прибытия скорой помощи в глаза следует закапать раствор новокаина и дикаина. При отравлении парами постращавшему требуется срочно выйти на свежий воздух и промыть слизистые оболочки водой. Чтобы уменьшить площадь повреждения тканей, обожжённый участок кожи нужно промыть проточной водой и приложить повязку с содой.

Желательно проходить лечение в стационарных условиях, оставаясь под наблюдением врачей. Время на восстановление организма зависит от того, насколько сильно поражены кожные кожные покровы или органы. Как правило, лечение осуществляется с помощью антибиотиков, а в качестве обезболивающего назначается новокаин. .

Если у больного наблюдается желудочное кровотечение, ему необходимо переливание крови и также введение плазмы. В ряде случаев при кровотечении может понадобиться хирургическое вмешательство.

Интересные факты о серной кислоте

Хотя сегодня принято изготавливать серную кислоту на специальных предприятиях, она всё же встречается в природе, причём в 100%-ом виде. Например, в Италии на острове Сицилия можно увидеть, как со дна Мёртвого моря просачивается H2SО4. Это место принято называть Озером смерти, живые существа стараются не подходить слишком близко к нему. Выделение серной кислоты со дна происходит из-за содержания в земной коре пирита.

Серная кислота может выделяться и при сильных извержениях вулкана. Такие явления достаточно опасны для людей и окружающей среды. Одними из последствий попадания H2SО4 в атмосферу могут стать климатические изменения. Серная кислота считается главной причиной, по которой выпадают кислотные дожди, а выделяется она из-за попадания в воздух диоксида серы.

Как уже было ранее замечено, серная кислота эффективно поглощает воду из воздуха. Это качество позволяет использовать её для осушения газов. Раньше было принято наливать жидкость в небольшие ёмкости и оставлять между стёклами. Это помогало предотвратить запотевание окон в комнате.

Источник

Серная кислота — Все что необходимо знать

Вещество серная кислота – токсичный и смертельно опасный реагент. Но без него современное человечество обойтись не может. используют при производстве лекарственных препаратов, химической продукции, металлургии, удобрений, нефтепродуктов. Вещество не имеет особого запаха, бесцветно, вязкой консистенции, но имеет привкус меди. Отлично взаимодействует с водой в любых пропорциях. Из-за хорошего взаимодействия с другими веществами и водой имеет неофициальное название «кровь химии».

Где применяется серная кислота

За год во всем мире используют более 200 миллионов тонн вещества. В основном оно уходит на производство удобрений и химической продукции:

  • Минеральные удобрения. Используют концентрированную серную кислоту
  • Лакокрасочные изделия
  • Органические и неорганические соединения для получения различных видов химической продукции
  • Удаление ржавчины, окалины в металлопроизводстве.
  • Производство медикаментов

Разбавленная серная кислота – 7 типов солей

Серная кислота используется в концентрированном виде и в виде растворов точнее солей. Смеси различных химических веществ:

  • Сульфат бария. Используется для производства белой краски и бумаги, так же используется для анализа желудка человека – специальное рентгеновское исследование.
  • Сульфат натрия 10-ти водный. Полученное вещество используется в соде, в медицине в производстве слабительных препаратов.
  • Сульфат кальция. В основном используется в медицине и строительстве. Встречается в природе в виде гипса.
  • Железный купорос. Используется при борьбе с вредителями растений.
  • Медный купорос. Так же используется в сельском хозяйстве – уничтожает вредителей и лечит растения. Так же используется для удаления плесени и других видов грибов со стен.
  • Сульфат алюминия. Используется для производства бумаги, картона, целлюлозы.
  • Различные виды Квасцов. Используют в производстве красок и дубления кожи.

Еще разбавленная серная кислота используется при производстве аккумуляторов в виде дистиллята. Так же такой вид раствора как Олеум. Он чаще всего необходим для транспортировки, так как не воздействует со сталью в отличие от концентрированной серной кислоты.

История. Кто начал использовать раствор серной кислоты

Всем, кто имеет дачный участок или дом в деревне известен медный купорос. Изучением и производством растворов с содержанием серной кислоты активно начали заниматься в 13 веке. Химики того времени придумали нагревать алюмокалиевые квасцы. В 15 веке химики продвинулись и придумали «купоросное масло». В 16 веке Иоганн Глаубер придумал другой способ добычи вещества. С помощью горения нитрата калия серы в присутствии водных паров, он получил Серную кислоту. Уже в это время Серную кислоту использовали химики, фармацевты и ювелиры.

В дальнейшем в Англии ученый Джон Робак решил удешевить производство и заменил стеклянные резервуары на освинцованные. Этим способом он получал 65% раствор вещества Н2SO4.

Современный метод добычи открыли в 19 веке. Он получил название «Нитрозный». К концу 19 века в Европе выпускали за год 1 миллион тонн серной кислоты.

В России первые фабрики по производству открылись в Москве в 1805 году.

Как производят серную кислоту в наше время

На сегодняшний день используют два метода Контактный и Нитрозный.

Читайте также:  Социальная технология способ осуществления процессов

Контактный метод используется по всему миру. Его распространённость обусловлена следующими преимуществами:

  • Хорошее качество получаемого вещества
  • Минимальный вред окружающей среде в процессе производства

При Контактном методе используют следующие виды сырья:

  • Сера
  • Пирит
  • Вода
  • Оксид ванадия (как катализатор)
  • Сульфид металлов
  • Сероводород.

Пирит измельчают для ускорения прохождения химической реакции. Далее измельченные пирит смешивают с водой. Это позволяет удалить не нужные примеси, они остаются на поверхности. Далее под воздействием высокой температуры (800 °C) вода испаряется не нужные взвеси сгорают. Далее Добавляют катализатор и уменьшают температуру (420-550 °C) Происходит процесс окисления и диоксид серы превращается в ангидрид серной кислоты. Далее в поглотительной башне ангидрит отделяется и появляется чистая серная кислота. В процессе производства вырабатывается огромное количество тепла, которое используют как вспомогательный источник энергии. При использовании данного метода получения Н2SO4 почти нет отходов.

Нитрозный метод представлен в двух вариантах камерный и башенный. При его использовании получится 75% серная кислота. В составе остается железо оксид азота, и иных примесей. Данный способ вреден для экологии, но до сих пор достаточно часто применяется, так как он проще и дешевле Контактного метода.

Основные производители серной кислоты в России

В России ежегодно производят около 10 миллионов тонн серной кислоты. Заводы представляют собой комплекс различных производств и поэтому в основном самостоятельно перерабатывают почти все полученное вещество. В основном это производители удобрений, но так же выпускают следующие виды серной кислоты:

  • Техническая
  • Аккумуляторная
  • Отработанная
  • Продукт 100% чистоты
  • Олеум.

Основные крупнейшие производители серной кислоты в России:

  • Щекиноазот
  • Славия
  • Компонент-Реактив
  • Воскресенские минеральные удобрения
  • Бийский олеумный завод
  • Химпром
  • Галополимер и другие

Не маловажную роль играют поставщики вещества пирит. В России их добывают на двух горно-обогатительных комбинатах Талнахский и Норильский.

Транспортировка вещества серная кислота

Серная кислота вещество повышенной опасности и требует определенных мер при транспортировке. Вещество взрывоопасно и имеет 8 класс опасности в перевозке грузов. В случае ошибки водителя и аварии велика вероятность разлива серной кислоты и нанесения вреда экологии.

Поэтому для перевозки опасных грузов требуются особе правила. Подпирается специальная устойчивая емкость для перевозки. Цистерны или специальные бочки и ёмкости, которые изготовлены из определённых сплавов, на которые не оказывает воздействие кислоты и яды.

Транспорт обязательно должен иметь соответствующую маркировку предупреждающую других водителей об опасном грузе. Водитель проходит специальное обучение и получает свидетельство АДР. Для каждой транспортировки разрабатывается специальный маршрут следования, которые исключает места большого количества людей и крупные производственные объекты. Чтобы избежать экологической катастрофы в случае ДТП и воздействия опасных химических веществ на людей.

В чем опасность серной кислоты для человека

Н2SO4 очень токсичное вещество. Легко растворяется в воде и вступает в контакт с другими химическими веществами. В чистом виде сильно поглощает влагу и может распространиться в газообразной форме, в случае аварии на производстве или при транспортировке. Серная кислота в большой концентрации взрывоопасна.

В случае если на человека попадут капли вещества на кожу либо он вдохнет пары или что еще хуже каким-то образом выпьет даже несколько капель последствия могут очень плачевными. Серная кислота очень агрессивна плюс в её состав входит мышьяк, который усиливает отравление организма человека. Но существует безвредная доза серной кислоты, содержащаяся в воздухе, 0.3мг на 1 кв. метр. При воздействии серной кислоты на человека часто возникает трахеит, бронхит, ларингит. Если кислота попала на кожный покров, то кожа разъедается, и рана очень долго заживает. При этом если не обратиться за профессиональной медицинской помощью место ожога может разрастись и привести к летальному исходу пострадавшего. Какие признаки отравления серной кислотой бывают:

  • Тошнота, рвота
  • Расстройство ЖКТ
  • Боли в органах пищеварения
  • Изменение цвета мочи на красный
  • Изменение десен – проявляются бурые пятна
  • Обильное слюноотделение
  • Ожог слизистых поверхностей -глаз, носа
  • Кровотечение из носа
  • Посинение кожи
  • Отёк гортани, хрипы

Последний пункт очень опасный симптом. Человек в этом случае очень близок к удушью и летальному исходу.

Варианты первой помощи при отравлении серной кислотой

Если вы находитесь в зоне, где в воздухе скапливается серная кислота, необходимо немедленно выйти на чистый воздух. Далее обратиться к мед. работникам, вызвать скорую помощь. В момент ожидание помощи, можно попробовать облегчить свое состояние после отравления серной кислотой. Если раствор вещества попал внутрь, то нужно сделать промывание желудка большим количеством теплой воды. Если Н2SO4 попало на слизистую, то необходимо сразу промыть ее чистой водой в большом количестве. Дальнейшую помощь и последующее лечение окажут профессиональные сотрудники мед. учреждений. Самолечение невозможно, так как это может привести к ухудшению состояния человека и к летальному исходу.

Ликвидация разлива серной кислоты

В случае аварии на производстве либо в момент транспортировки может произойти возгорание или разлив серной кислоты. Устранение аварии производят в специальных костюмах химической защиты, например, изолирующие костюмы Стрелец. Газоспасатели в костюмах химзащиты эвакуируют пострадавших в безопасную зону. Устраняют течь и с помощью большого количества воды гасят серную кислоту. В дальнейшем собирают жидкость в специальные емкости и утилизируют. Газоспасателям оказывают помощь пожарные, им так же приходится работать в костюмах химзащиты.

Источник

Оцените статью
Разные способы