- Сплав на основе алюминия для генерирования водорода, способ его получения и газогенератор водорода
- Получение водорода в домашних условиях
- Получение водорода из алюминия и водного раствора щелочи, реактор, простые эксперименты
- Итак, что нам понадобилось для изготовления и опытов.
- Подстаканник.
- Крышка реактора.
- Собственно опыты.
Сплав на основе алюминия для генерирования водорода, способ его получения и газогенератор водорода
Владельцы патента RU 2253606:
Изобретение относится к сплаву, способу его получения и газогенератору для получения водорода. Сплав может быть использован, например, в двигателях внутреннего сгорания, работающих на водородном топливе, или в электромобилях, использующих электрохимические генераторы на водороде, что дает экологически чистый выхлоп отработанных газов. Сплав на основе алюминия содержит алюминий и обезвоженный гидроксид щелочного металла в весовом количестве до 10% или обезвоженный гидроксид щелочного металла и медь до 5%, так, чтобы в сумме этот сплав содержал эти добавки до 10%. Способ получения вышеуказанного сплава заключается в том, что обезвоженный гидроксид щелочного металла помещают на дно тигля, а сверху размещают алюминий и, при необходимости, медь, плавку ведут в индукционной печи в вакууме при 0,2-0,5 атм или в защитной атмосфере инертного газа. Сначала расплавляют гидроксид щелочного металла и в его расплаве при температуре выше 660°С плавят алюминий и, при необходимости, медь. Газогенератор водорода содержит реактор, выполненный в виде теплообменника, в котором пластины или трубки заполнены водой. Изобретение позволяет создать дешевый сплав на основе алюминия, при использовании которого повышается газопроизводительность процесса. 3 н. и 2 з.п. ф-лы, 1 ил.
Изобретение относится к областям энергетики и экологии. По данному изобретению получают сплав на основе алюминия, предназначенный для получения водорода при реакции с водой. При этом полученный водород используют, например, в двигателях внутреннего сгорания, работающих на водородном топливе, что дает абсолютно экологически чистый выхлоп отработанных газов.
Известен сплав, содержащий алюминий, галлий, индий, олово, предназначенный для получения водорода при реакции его с водой (см. авт. свид. SU № 535364, опубл. 15.11.1976).
Недостатками данного сплава являются, во-первых, дороговизна индия и галлия (200 тыс. руб./кг) и ничтожно малое их содержание в земной коре (стотысячные доли %), т.е. предполагать промышленное производство и применение таких сплавов весьма проблематично. Во-вторых, множество подобных сплавов изготовляют путем спекания порошков, т.к. растворимость многих металлов в алюминии при их сплавлении имеет ограниченный характер. Но спекание приводит к тому, что при реакции с водой сплав буквально рассыпается на глазах и дальше реакция идет совершенно неупорядоченно, т.е. довольно быстро выходит на максимум по газопроизводительности, а затем идет медленный (десятки минут) спад до нуля, т.е. осуществить дозированную подачу водорода, например, в двигатель технически очень сложно и будет связано с лишними объемами и устройствами. К тому же к.п.д. подобного процесса (по газовыделению) в лучшем случае составит 60%.
Известен газогенератор водорода, выполненный в виде двух баков, размещенных в багажнике “Москвича-412”. В баки засыпался активированный алюминий и заливался раствором щелочи, после чего начинался процесс выделения водорода (см. книгу Варшавского И.Л. Энергоаккумулирующие вещества, из-во “Наукова думка”, 1980, с.101-105). Недостатком подобных газогенераторов является сильная зависимость от состава воды. Так переход от водопроводной воды одного района к водопроводной воде другого района на одном и том же образце индиево-галлиево сплава газопроизводительность изменяется в два раза, а переход от дистиллированной воды к водопроводной — в 3,5 раза.
Задачей изобретения является создание дешевого сплава на основе алюминия, у которого отсутствуют все вышеуказанные недостатки, предлагается способ создания этого сплава и газогенератор водорода на этом сплаве.
Поставленная задача достигается сплавом на основе алюминия, способом его получения и газогенератором водорода.
Сплав, предназначенный для получения водорода, содержит алюминий и добавку, разрушающую окисную пленку при взаимодействии с водой. В качестве добавки он содержит обезвоженный гидроксид щелочного металла в весовом количестве до 10% или обезвоженный гидроксид щелочного металла и медь до 5%, так, чтобы в сумме этот сплав содержал эти добавки до 10%.
В качестве обезвоженного гидроксида щелочного металла сплав содержит обезвоженный гидроксид натрия, лития или калия.
Способ получения вышеуказанного сплава заключается в том, что обезвоженный гидроксид щелочного металла помещают на дно тигля, а сверху размещают алюминий и, при необходимости, медь, плавку ведут в индукционной печи в вакууме при 0,2-0,5 атм или в защитной атмосфере инертного газа, сначала расплавляют гидроксид щелочного металла и в его расплаве при температуре выше 660°С плавят алюминий и, при необходимости, медь. Плавку ведут при перемешивании за счет индукционных токов печи.
Газогенератор водорода содержит реактор. Реактор выполнен в виде теплообменника, в котором пластины или трубки изготовлены из вышеописанного сплава на основе алюминия. Промежутки между пластинами или трубками заполнены водой. Для регулирования процесса газовыделения газогенератор водорода содержит магистраль с насосом и ресивером воды и водорода и трубопроводом для слива воды в магистраль между насосом и ресивером.
Плавку производят в индукционной печи в вакууме или в среде инертного газа, т.к. обезвоженный гидроксид натрия обладает значительной гигроскопичностью и в противном случае (при недостатке вакуума или отсутствии инертной атмосферы) при плавке были отмечены небольшие вспышки. При соблюдении перечисленных условий вспышки отсутствовали (Опытные плавки проводились в Институте высоких температур РАН). Хорошая смешиваемость при сплавлении обезвоженного гидрооксида натрия с алюминием заложена в их физических и химических свойствах.
Обезвоженный гидроксид натрия в отсутствии воды и значительного количества оксида алюминия в химическую реакцию с алюминием не вступает. Гидроксид натрия начинает плавиться при 322°С и находится в расплавленном состоянии до 1378°С (температура кипения), ее плотность-2,13 г/см 3 . Поэтому плавка проводится следующим образом. В тигель на дно насыпают сначала обезвоженный гидрооксид натрия в количестве до 10%, а сверху размещают алюминий (чем больше гидроксида натрия в смеси, тем больше будем проигрывать в газопроизводительности и прочности сплава, из которого в дальнейшем будет изготавливаться лист, трубки, стержни и т.д.) Для увеличения скорости газовыделения в пределах выше рекомендованных 10% можно добавлять в сплав до 5% медь. К тому же медь хорошо растворяется в расплаве с алюминием.
Подобными свойствами обладают и другие обезвоженные гидроксиды щелочных металлов лития и калия (за исключением гидроксида кальция, т.к. он, разлагаясь при 580°С, выделяет воду, которая тут же вступает в реакцию с алюминием, образуя оксиды алюминия), поэтому вместо гидроксида натрия они тоже могут быть использованы при приготовлении алюминиевого сплава.
После расплавления гидроксида в ней тонут гранулы (куски алюминия) и процесс плавки алюминия идет уже в расплаве гидроксида. Как только алюминий расплавляется (температура свыше 660°С), начинается интенсивный процесс перемешивания за счет индукционных токов. Из полученного слитка был выточен цилиндрический образец. Стружка от этого образца была испытана на газопроизводительность. Полнота газовыделения (по сравнению с теоретической) составила 92%. Образец после испытаний имел золотистый цвет. Цилиндрический образец был подвергнут поперечной распиловке и вторично испытан на газовыделение. По всему поперечному сечению образца газовыделение было равномерным, о чем дополнительно говорил равномерный характерный золотистый окрас по всему поперечному сечению. Стружка и сам образец имели идеальную равномерную (гладкую) коррозию — без питтинга, язв и растрескиваний. Сама стружка по эластичности не уступала чистому алюминию, т.е. сплав вполне пригоден для изготовления тонких листов, трубок и т.п. для изготовления газогенераторов водорода, конструкция которых будет подобна конструкции трубчатых, слоистых (пластинчатых) и т.п. теплообменников.
Изобретение заключается в разработке состава алюминиевого сплава, который сам уже содержит в себе щелочь и при взаимодействии с любой водой (водопроводной, дистиллированной, речной, озерной и т.п.) разрушает окисную пленку алюминия, способа получения водорода и конструкции газогенератора водорода на основе этого сплава.
Состав сплава и способ его получения описаны выше. На чертеже приводится конструкция газогенератора на основе этого сплава со следующими позициями: 1 — трубчатый или пластинчатый газогенератор, 2 — ресивер воды и водорода, 3 — насос с регулируемой подачей воды, 4 — кран слива.
Устройство работает следующим образом. Вначале ресивер 2 заполняется обычной водой и в момент запуска двигателя вода при помощи насоса 3 подается в реактор 1, который устроен наподобие теплообменника, например, пластинчатого, только пластины 5 в нем сделаны из сплава алюминия с обезвоженным гидроксидом щелочного металла, в промежутках между ними протекает вода со скоростью 1±0,5 м/сек, которая при взаимодействии с пластинами 5 выделяет водород. Водород вместе с непрореагировавшей водой по трубопроводу поступает в ресивер 2, где как в сепараторе (из-за незначительной растворимости водорода в воде) отделяется от воды и поступает в верхнюю часть ресивера 2, откуда по трубопроводу — к потребителю, а вода по нижнебоковому трубопроводу через насос 3 возвращается в реактор 1. Процесс газовыделения регулируют подачей воды в реактор 1 через насос 3. Для полного прекращения подачи водорода установлен кран слива 4 к входу насоса 3 с полным выключением последнего.
1. Сплав на основе алюминия, предназначенный для получения водорода, содержащий алюминий и добавку, разрушающую окисную пленку алюминия при взаимодействии с водой, отличающийся тем, что в качестве добавки он содержит обезвоженный гидроксид щелочного металла в весовом количестве до 10% или обезвоженный гидроксид щелочного металла и медь до 5% так, что в сумме этот сплав содержит эти добавки до 10%.
2. Сплав по п.1, отличающийся тем, что в качестве обезвоженного гидроксида щелочного металла сплав содержит обезвоженный гидроксид натрия, лития или калия.
3. Способ получения сплава по любому из пп.1 и 2, заключающийся в том, что обезвоженный гидроксид щелочного металла помещают на дно тигля, а сверху размещают алюминий и при необходимости медь, плавку ведут в индукционной печи в вакууме при 0,2-0,5 атм или в защитной атмосфере инертного газа, сначала расплавляют гидроксид щелочного металла и в его расплаве при температуре выше 660°С плавят алюминий и при необходимости медь.
4. Газогенератор водорода, содержащий реактор, отличающийся тем, что реактор выполнен в виде теплообменника, в котором пластины или трубки изготовлены из сплава по любому из пп.1 и 2, промежутки между пластинами или трубками заполнены водой.
5. Газогенератор водорода по п.4, отличающийся тем, что для регулирования процесса газовыделения он содержит магистраль с насосом и ресивером воды и водорода и трубопроводом для слива воды в магистраль между насосом и ресивером.
Источник
Получение водорода в домашних условиях
Один из способов получения водорода в лаборатории основан на реакции
алюминия с раствором щелочи – едкого натра или едкого кали. При этом
образуется более чистый водород, чем в случае реакции кислот с активными
металлами. Единственное, что его загрязняет – брызги щелочи, которые
можно отделить с помощью каплеуловителя и слоя стекловаты.
Насыпьте в колбу несколько грамм едкого натра или едкого кали,
налейте примерно 50-100 мл воды и перемешайте содержимое до растворения
щелочи. Добавьте в колбу несколько кусочков алюминия. Начнется выделение
водорода – сначала слабое, потом все более сильное. Раствор при этом
будет разогреваться.
Алюминий – довольно активный металл, он легко реагировал бы с
водой, если бы не прочная оксидная пленка на его поверхности. Поэтому
алюминий может очень долго контактировать с водой без каких-либо
признаков разрушения. Вспомните, что еще недавно на кухнях активно
использовали алюминиевую посуду. Алюминиевые линии электропередач
десятилетиями служат в любую погоду – и в солнце и в дождь.
Но при контакте со щелочью оксидная пленка на поверхности
алюминия разрушается, и он начинает реагировать с водой. В результате
выделяется водород, а металл растворяется:
Теперь осторожно добавим в колбу примерно 10 гр щелочи и еще немного
алюминия. Реакция значительно ускорится. Закроем колбу пробкой с
трубкой, накройте отверстие трубки небольшой пробирочкой. Подождите,
пока водород вытеснит воздух из колбы (3-5 мин) после чего снимите
пробирку (не переворачивая) и поднесите к ее отверстию пламя. Если
водород сгорит спокойно (без хлопка) подожгите газ на выходе из колбы.
На воздухе водород горит бесцветным, почти невидимым пламенем, но брызги
раствора едкого натра придают ему желтоватый цвет.
Источник
Получение водорода из алюминия и водного раствора щелочи, реактор, простые эксперименты
Лабораторные работы — этакое таинство позволяющее прочувствовать полезность и практичность теории из учебников и тетрадок. Живые опыты производят изрядное впечатление, наглядно демонстрируя, как интересен и удивителен мир вокруг. Это хороший дополнительный фактор, чтобы заинтриговать наукой юных обормотов. К превеликому сожалению, современные школы все более манкируют натурными экспериментами при изучении естественных наук. Демонстрацию фото-видео, презентаций предпочитают возне с пробирками и настоящими реактивами. Это проще и дешевле для школы и преподавателя, однако и меньше вовлекает учеников. И если в школах больших городов еще существуют лаборатории при кабинетах физики и химии, то в школах сельских дела обстоят из рук вон плохо.
Поскольку спасение утопающих, дело сами-знаете-чьих рук, мы стараемся хоть иногда организовывать для своего ребенка интересные работы в разных областях. Чтобы если не привить любовь к исследованиям, то по крайней мере продемонстрировать. Эта работа была посвящена водороду — его простому получению и выяснению некоторых зрелищных особенностей. Заодно можно коснуться и истории (воздухоплавания — аппараты легче воздуха, Шарльеры).
Итак. Наиболее простым и безопасным способом получения Н2 можно признать сугубо химический — из водного раствора щелочи и алюминия. Реактивы просты и относительно безопасны, водорода выделяется много — даже нетерпеливый вьюнош соскучится не успеет. Попутно мы сделали небольшой настольный (напольный) реактор позволяющий получать достаточно газа и меньше заботиться о безопасности (опрокидывании).
Чтобы не было конфуза, первым делом попробовал сделать эксперимент самостоятельно. Взял несколько алюминиевых обрезков от работы с лампой и залил их раствором щелочи.
Чистой щелочи не нашлось, применил сухой (гранулы) очиститель для труб в состав которого она входит. Надо сказать, что не все химикаты подобного рода работают в нужном качестве, например «Крот» жидкий в бутылке с носиком уточкой, на алюминий никакого впечатления не произвел — в его состав кроме щелочи входит и ингибитор коррозии.
Мой первый эксперимент проходил ни шатко ни валко — реактивы брал на глазок, щелочи положил мало. Шарик на фото образовывался почти за двое суток. Для эксперимента №2 отмерил реактивы на весах, залил избытком воды (реакция экзотермическая, раствор разогревается), алюминий измельчил, применил катализатор — кальцинированную соду. Дело пошло существенно веселее, несколько литров газа получалось за минуты, однако, одноразовая 1.5 л ПЭТ бутылка оказалась не лучшим реактором — разогрев алюминиевой засыпки на дне деформировал и проплавил емкость, она стала протекать.
Тогда было решено сделать реактор из имеющегося 2 л. порошкового огнетушителя в толстом пластиковом корпусе. Основательный корпус вселял надежду на прочность и относительную термостойкость, однако прибор узковысок и неустойчив. Гулять так гулять — мы его снабдили хорошим устойчивым подстаканником. К посильным работам привлекалась и жертва неуемной родительской педагогики.
Итак, что нам понадобилось для изготовления и опытов.
Б/у огнетушитель ОП-2, набор инструментов для столярных работ, ЛКМ, посуда, мелочи. Реактивы — алюминий, щелочь, вода, мыльный раствор.
Подстаканник.
В хороший солнечный денек подобрал подходящие обрезки сосновых досок, в основном попорченные древоточцами, не пригодные для других столярных или плотницких работ. Предварительно прострогал их, опилил в размер и прострогал еще разок до нужной толщины (12. 13 мм). При этом удачно удалились все внутренние паршивцы, портящие деревяшки вместе со своими следами ходами. Чудненько.
На пиле маятниковой (торцевой) обрезал заготовки в размер, опилил углы.
Из дефектов на деревяшках осталась большая дырка от выпавшего сухого сучка, ничего, сойдет за люк для контроля температуры (пальцем пробовать корпус реактора), опять же — вентиляция. Зашкуриванием занимался загрустивший от трудностей научной работы ребенок.
В дне подстаканника просверлил ряд отверстий, как в мыльнице, чтобы стекало, ежели чего прольется. Кроме того, дно подстаканника чуть приподнято. Для того же. Заготовки скрепил клеем (столярный ПВА) с некрупными гвоздиками.
Чтобы наш подстаканник не размокал и не пачкался грязными пальцами покрасили его в зеленый цвет засыхающими остатками эмали ПФ-115. Для работ снова был привлечен практикант, уже повеселевший — красить мы любим. Для покраски было выделено рабочее место в проветриваемом дровнике, выданы материалы, доведена техника безопасности. Деревяшки обмели и продули от пыли, для первого слоя краску слегка разбавили растворителем. Перед нанесением слоя второго, первый слегка зашкурили некрупной затертой наждачкой — чтобы удалить встопорщившиеся волокна древесины.
Крышка реактора.
Огнетушитель нам достался со сломанной верхней частью, но все что нужно для запирания емкости было в наличии. Большую накидную металлическую гайку удалось отвернуть, зажав ее в слесарных тисках. Внутри обнаружилась соломинка с раструбом на дне (для правильного забора рабочего тела — порошка) и небольшой баллончик для сжатого газа.
Баллончик удалось отвернуть не без труда (фиксатор или герметик на резьбе). Применили разводной ключ и тиски. Соломинку укоротили и привинтили навыворот — снаружи, получился удобный патрубок для наполнения шарика. Для присоединения нетолстого силиконового шланга сделали еще один патрубок, поменьше. Из оставшейся соломинки с раструбом получилась хорошая воронка для наполнения реактора химикатами.
Патрубок для шланга сделали из кусочка сменной ампулы шариковой ручки. Вклеили ее термоклеем. Действовали так: полностью залили отрезок толстого красного патрубка термоклеем с одной стороны, после его застывания залили и с другой. Чтобы расплавленный клей не выливался с обратной стороны, заткнули ее гладким металлическим (не прилипает клей) цилиндриком, подходящим по диаметру (гальванический элемент типоразмера ААА). Дали клею полностью остыть и отвердеть и просверлили сквозное отверстие. Получился этакий тройник.
Сборку пластиковых частей сделали с применением силиконового герметика, залили термоклеем и несколько ненужных отверстий в крышке. Осталась только загрузочная горловина с резьбовой пробкой.
Собственно опыты.
Первым делом, не худо будет напомнить (объяснить) ребенку что происходит внутри реактора и почему оттуда выходит газ — водород. Дескать, происходит химическая реакция между водой, щелочью и алюминием. Интересно, что алюминий, паче чаяний, метал очень активный (в электрохимическом ряду металлов стоит между магнием и цинком). Он вполне способен самостоятельно вступать в реакцию с водой, но на поверхности Аl очень быстро образуется прочная пленка окисла, предохраняющего металл. Щелочь удаляет оксидную пленку, происходит хим.реакция, выделяется водород.
2Al + 2KOH + 6H2O = 2 K[Al(OH)4] + 3H2↑
Мы решили сделать с водородом два простых опыта — наполнять им мыльные пузыри (взлетают вверх — видим что водород легче воздуха) и поджечь мыльную пену наполненную водородом (продемонстрировать горючесть). В обоих случаях нужны мыльные пузыри.
Их мы сделали из непижонского шампуня немного разбавив его водой и добавив капельку глицерина для прочности. Попробовали что получилось, кстати пришлась и соломинка от огнетушителя.
Ничего, все работает, можно приступать.
К толстому патрубку реактора прикрепили ресивер — воздушный шарик. Засыпали алюминиевые гранулы, залили щелочь. Реактивы остались от предыдущих опытов, несколько изношенные, но работали.
Реактор не следует заливать под пробку, около 5 см лучше оставить пустыми иначе в наружу лезет щелочная пена.
Водород — самый легкий из газов, весит он в 14.5 раз легче воздуха. Мыльный пузырь наполняемый водородом, дивным образом взлетает вверх.
Опыт следует проводить в закрытом помещении без сквозняков, вдали от открытого пламени. Некоторое время нужно дать реактору поработать «на помещение» или выпустить на улице первую порцию накопленного газа — водород здесь с примесью воздуха. Иногда на конце соломинки (шланга) скапливается избыток мыльной жидкости, при надувании пузыря она висит капелькой на его дне как корзина аэростата и мешает взлету — после макания в мыльный раствор конец шланга лучше слегка стряхнуть. Следует помнить и о влажности полученного водорода — вместе с газом из реактора увлекается и щелочная взвесь (лопающиеся на поверхности пузырьки водорода) и испаряется вода (реакция экзотермична — раствор щелочи разогревается). Однако легкости даже влажного водорода вполне хватает для всплывания мыльных пузырей. Можно попробовать несколько осушить его, пропуская через простые фильтры.
При надувании пузырей из тонкого шланга, довольно было и тока водорода образующегося при реакции. Регулировали мы его пережимая мягкий шланг в удобном месте. Для выдувания пузырей поосновательней, применили всю ту же соломинку сделав к ней переходник. Водород в этом случае приходилось накапливать в ресивере.
Источник