Самый простой способ регулировать напряжение

Способы и средства регулирования напряжения у электроприемников

Для обеспечения некоторых заранее заданных значений отклонений напряжений у электроприемников применяются следующие способы:

1. Регулирование напряжения на шинах центра питания;

2. Изменение величины потери напряжения в элементах сети;

3. Изменение величины передаваемой реактивной мощности.

4. Изменение коэффициента трансформации трансформаторов.

Регулирование напряжения на шинах центра питания

Регулирование напряжения на центре питания (ЦП) приводит к изменениям напряжения во всей присоединенной к ЦП сети и называется централизованным, остальные способы регулирования изменяют напряжение на определенном участке и называются местными способами регулирования напряжения. В качестве ЦП городских сетей могут рассматриваться шины генераторного напряжения ТЭЦ или шины низшего напряжения районных подстанций или подстанций глубокого ввода. Отсюда вытекают и способы регулирования напряжения.

На генераторном напряжении оно производится автоматически изменением тока возбуждения генераторов. Отклонения от номинального напряжения допускаются в пределах ±5%. На стороне низшего напряжения районных подстанций регулирование осуществляется при помощи трансформаторов с регулированием под нагрузкой (РПН), линейных регуляторов (ЛР) и синхронных компенсаторов (СК).

При различных требованиях, предъявляемых потребителями, устройства для регулирования могут применяться совместно. Такие системы носят название централизованно-группового регулирования напряжения.

На шинах ЦП, как правило, осуществляется встречное регулирование, т. е. такое регулирование, при котором в часы наибольших нагрузок, когда потери напряжения в сети тоже наибольшие, напряжение повышается, а в часы минимальных нагрузок — понижается.

Трансформаторы с РПН позволяют осуществить довольно большой диапазон регулирования до ±10 — 12%, а в некоторых случаях (трансформаторы типа ТДН с высшим напряжением 110 кВ до 16% при 9 ступенях регулирования. Существуют конструкции для плавного регулирования под нагрузкой, но они пока дороги и применяются в исключительных случаях, при особенно повышенных требованиях.

Изменение величины потери напряжения в элементах сети

Изменение потери напряжения в элементах сети может осуществляться изменением сопротивлений цепи например, изменением сечении проводов и кабелей, отключением или включением числа параллельно включенных линий и трансформаторов (смотрите — Параллельная работа трансформаторов).

Выбор сечений проводов, как известно, производится из условий нагрева, экономической плотности тока и по допустимой потере напряжения, а также по условиям механической прочности. Однако расчет сети, особенно высокого напряжения по допустимой потере напряжения, не всегда обеспечивает нормируемые отклонения напряжения у электроприемников. Поэтому в ПУЭ нормируются не потери, а отклонения напряжения.

Реактивное сопротивление сети можно изменять при последовательном включении конденсаторов (продольная емкостная компенсация).

Продольной емкостной компенсацией называется, способ регулирования напряжения, при котором последовательно в рассечку каждой фазы линии включаются статические конденсаторы для получения надбавок напряжения.

Известно, что суммарное реактивное сопротивление электрической цепи определяется разностью между индуктивным и емкостным сопротивлениями.

Изменяя величину емкости включаемых конденсаторов, а следовательно, и величину емкостного сопротивления, можно получить различные величины потери напряжения в линии, что равнозначно соответствующей надбавке напряжения на зажимах электроприемников.

Последовательное включение конденсаторов в сеть целесообразно при невысоких коэффициентах мощности в воздушных сетях, в которых потеря напряжения в основном определяется ее реактивной составляющей.

Продольная компенсация особенно эффективна в сетях с резкими колебаниями нагрузки, так как ее действие совершенно автоматическое и зависит от величины протекающего тока.

Следует также учитывать, что продольная емкостная компенсация приводит к увеличению токов короткого замыкания в сети и может быть причиной резонансных перенапряжений, что требует специальной проверки.

Для целей продольной компенсации нет необходимости устанавливать конденсаторы, рассчитанные на полное рабочее напряжение сети, однако они должны иметь надежную изоляцию от земли.

Изменение величины передаваемой реактивной мощности

Реактивная мощность может вырабатываться не только генераторами электростанций, но и синхронными компенсаторами и перевозбужденными синхронными электродвигателями, а также статическими конденсаторами, включаемыми в сеть параллельно (поперечная компенсация).

Мощность компенсационных устройств, которые должны быть установлены в сети, определяется балансом реактивной мощности в данном узле энергосистемы на основе технико-экономических расчетов.

Читайте также:  Какие бывают канаты по способу свивки

Синхронные двигатели и батареи конденсаторов, являясь источниками реактивной мощности, могут оказать существенное влияние на режим напряжения в электрической сети. При этом автоматическое регулирование напряжения и сети синхронными двигателями может осуществляться плавно.

В качестве источников реактивной мощности на крупных районных подстанциях часто применяются специальные синхронные двигатели облегченной конструкции, работающие в режиме холостого хода. Такие двигатели называются синхронными компенсаторами.

Наибольшее распространение и промышленности имеет серия электродвигателей СК, изготовляемых на номинальное напряжение 380 — 660 В, рассчитанных на нормальную работу при опережающем коэффициенте мощности, равном 0,8.

Мощные синхронные компенсаторы устанавливаются, как правило, на районных подстанциях, а синхронные двигатели чаще применяются для различных приводов в промышленности (мощные насосы, компрессоры).

Наличие относительно больших потерь энергии в синхронных двигателях затрудняет их применение в сетях с небольшими нагрузками. Как показывают расчеты, в этом случае более целесообразны батареи статических конденсаторов. Принципиально влияние конденсаторов поперечной компенсации на уровни напряжения в сети аналогично влиянию перевозбужденных синхронных двигателей.

Более подробно о конденсаторах сказано в статье Статические конденсаторы для компенсации реактивной мощности, где они рассматриваются с точки зрения повышения коэффициента мощности.

Существует ряд схем автоматизации компенсационных батарей. Такие устройства выпускаются промышленностью в комплекте с конденсаторами. Одна из таких схем показана здесь: Схемы включения конденсаторных батарей

Изменение коэффициентов трансформации трансформаторов

Выпускаемые в настоящее время силовые трансформаторы напряжением до 35 кВ для установки в распределительных сетях снабжены переключателями ПБВ для переключения регулировочных ответвлений в первичной обмотке. Таких ответвлений обычно 4, кроме основного, что позволяет получить пять коэффициентов трансформации (надбавки напряжения от 0 до +10%, на основном ответвлении — +5%).

Перестановка ответвлений — наиболее дешевый способ регулирования, но он требует отключения трансформатора от сети, а это вызывает перерыв, хотя и кратковременный, в питании потребителей, поэтому он применяется только для сезонного регулировании напряжения, т. е. 1 — 2 раза в год перед летним и зимним сезонами.

Для выбора наивыгоднейшего коэффициента трансформации существует несколько расчетных и графических методов.

Рассмотрим здесь лишь один наиболее простой и наглядный. Порядок расчета следующий:

1. По ПУЭ принимают допустимые отклонения напряжения дли данного потребителя (или группы потребителей).

2. Приводят все сопротивления рассматриваемого участка цепи к одному (чаще к высокому) напряжению.

3. Зная напряжения в начале сети высшего напряжения, вычитают из него суммарную приведенную потерю напряжения до потребителя для требуемых режимов нагрузки.

В электрических сетях для централизованного и местного регулирований применяются силовые трансформаторы, снабженные устройством для регулирования напряжения под нагрузкой (РПН). Их преимущество заключается в том, что регулирование осуществляется без отключения трансформатора от сети. Существует большое количество схем с автоматическим и без автоматического управления.

Переход с одной ступени на другую осуществляется при дистанционном управлении при помощи электропривода без разрыва рабочего тока в цепи обмотки высшего напряжения. Это достигается закорачиванием на короткое время регулируемой секции токоограничивающим сопротивлением (дросселем).

Автоматические регуляторы весьма удобны и допускают до 30 переключений в сутки. Регуляторы отстраиваются таким образом, чтобы они имели так называемую зону нечувствительности, которая должна быть больше ступени регулирования на 20 — 40%. При этом они не должны реагировать на кратковременные изменения напряжения, вызванные удаленными короткими замыканиями, пусками крупных электродвигателей и т. д.

Схему подстанции целесообразно строить так, чтобы на один регулируемый трансформатор но возможности присоединялись потребители с однородными графиками нагрузок и примерно одинаковыми требованиями к качеству напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:
Читайте также:  Способ прекращения обязательств 10 букв

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

Читайте также:  Метод это система способов обучения при помощи которых учитель

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

Китайский РН на 220 вольт

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6.68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

Источник

Оцените статью
Разные способы