- Деление в столбик
- Как правильно делить в столбик
- Как выглядит деление в столбик с остатком
- Примеры на деление в столбик
- Математика. 3 класс
- Математика
- Письменное деление на двузначное число
- Деление на двузначное число с остатком
- Решение задач с единицами массы
- Как доступно объяснить ребёнку суть деления чисел
- Как объяснить деление дошкольнику
- Делим поровну
- Деление с остатком
- Видео: как освоить деление за 5–10 минут
- Что нужно для освоения деления в младшем школьном возрасте
- Эффективные способы объяснения деления школьникам
- Деление на основе знания таблицы умножения
- Деление двузначных чисел на однозначные
- Деление способом группирования
- Как объяснить деление в столбик
- Деление без остатка
- Деление с остатком
- Видео: как научиться делить в столбик
- Деление на двузначные числа
- Видео: тренажёр быстрого деления в уме для школьников
Деление в столбик
О чем эта статья:
3 класс, 4 класс
Как правильно делить в столбик
Делить столбиком проще, чем высчитывать в уме. Этот способ наглядный, помогает держать во внимании каждый шаг и запомнить алгоритм, который впоследствии будет срабатывать автоматически.
Рассмотрим пример деления трехзначного числа на однозначное 322 : 7. Для начала определимся с терминами:
- 322 — делимое или то, что необходимо поделить;
- 7 — делитель или то, на что нужно поделить:
- частное — результат действия.
Шаг 1. Слева размещаем делимое 322, справа делитель 7, между ставим уголок, а частное посчитаем и запишем под делителем.
Шаг 2. Смотрим на делимое слева направо и находим ту часть, которая больше делителя. 3, 32 или 322? Нам подходит 32. Теперь нужно определить сколько раз наш делитель 7 содержится в числе 32. Похоже, что четыре раза.
Проверяем: 4 × 7 = 28, а 28
Шаг 3. Остаток равен 4. Для продолжения решения его нужно увеличить. Мы сделаем это за счет следующей цифры делимого. Приписываем к четверке оставшуюся двойку и продолжаем размышлять.
Шаг 4. Сколько раз делитель 7 содержится в числе 42? Кажется, шесть раз. Проверяем: 7 × 6 = 42, 42 = 42 — все верно. Записываем полученное число к четверке справа — это вторая цифра частного. Делаем вычитание в столбик 42 из 42, в остатке получаем 0. Значит, числа разделились нацело.
Мы закончили решать пример и в результате получили целое число 46.
Как выглядит деление в столбик с остатком
Это такое же деление, только в результате получается неровное число, как получилось в примере выше.
- Например, делим 19 на 5. Наибольшее число, делящееся на 5 до 19 это 15. Проверяем 5*3=15, 19-15=4. Ответ: 3 и остаток 4. Записываем так: 19:5=3(4).
- Еще пример: делим 29 на 6. Также определяем максимальное число, делящееся на 6 до 29. Подходит 24. Ответом будет: 4 и остаток 5. А записываем: 29:6=4(5).
Примеры на деление в столбик
Давайте закрепим знания на практике. Для этого разделите столбиком примеры ниже, а после проверьте полученные цифры — чур, не подглядывать!
Источник
Математика. 3 класс
Конспект урока
Математика, 3 класс
Урок № 43. Приём деления для случаев вида 87 : 29, 66 : 22
Перечень вопросов, рассматриваемых в теме:
1. Как разделить двузначное число на двузначное?
2. Как выполнить деление вида 87 : 29, 66 : 22?
3. Как проверить правильность результата деления?
Глоссарий по теме:
Деление – это обратное действие умножению
Умножение – это сложение одинаковых слагаемых.
Метод подбора – это способ деления двузначного числа на двузначное, при котором частное подбираем последовательно и проверяем умножением.
Обязательная и дополнительная литература:
1. Моро М. И., Бантова М. А. и др. Математика 3 класс. Учебник для общеобразовательных организаций М.; Просвещение, 2017, C-18.
2. Петерсон Л. Г. Математика 3 класс. Часть 2. – М.: Ювента, 2013– 96 C., С-86.
3. Марченко И.С. Справочник школьника по математике: 1 – 4 классы. – М.: Эксмо, 2014. С. 160, (Светлячок) С. 50.
Теоретический материал для самостоятельного изучения
Рассмотрим решение задачи.
Высота дома тридцать два метра, а высота дерева – шестнадцать метров. Во сколько раз дом выше дерева?
Чтобы узнать во сколько раз дом выше, надо тридцать два разделить на шестнадцать. Получится два, в два раза. Выполнить такое деление можно
используя взаимосвязь умножения и деления. Это поможет научиться делить двузначное число на двузначное методом подбора частного.
Рассмотрим пример 48 : 12
Пробуем в частном два и проверяем. Двенадцать умножить на два получится двадцать четыре — не подходит. Пробуем- три. Двенадцать умножить на три равно тридцать шесть, тоже не подходит. Пробуем четыре. Двенадцать умножаем на четыре, получается сорок восемь, подходит. Значит, сорок восемь разделить на двенадцать получится четыре.
12 ∙ 2 = 24 не подходит
12 ∙ 3 = 36 не подходит
12 ∙ 4 = 48 подходит
В случае деления числа шестьдесят шесть на двадцать два, подбираем число, на которое надо умножить двадцать два, чтобы получилось шестьдесят шесть. Это число три.
66 : 22 = 3, так как 22 ∙ 3 = 66
Умножение нужно использовать для проверки правильности вычислений.
88 : 11 = 8, так как 11 ∙ 8 = 88
Чтобы делать меньше проб при подборе частного, нужно обратить внимание на последнюю цифру в делимом и делителе. В делимом цифра один , в делителе — цифра семь. В таблице умножения на семь находим число двадцать один (ведь один последняя цифра в делимом). Чтобы получить двадцать один, нужно семь умножить на три. Три – пробное число. Выполняем проверку.
Делимое 81 — последняя цифра 1
Делитель 27 — последняя цифра 7
7 ∙ 3 = 21 Проверка: 27 ∙ 3 = 81
Частное найдено, верно.
Выполним тренировочные задания
Вставьте пропущенные числа:
54 : 27 = ____ , так как 27 ∙ ___ = 54;
Ответ: 54 : 27 = 2 , так как 27∙ 2 = 54.
Зачеркните пример с ошибкой:
Ошибка в примере 42 : 14 = 2 и 64 : 16 = 3
Расшифруйте, расставляя ответы в порядке возрастания, название одного из самых высоких деревьев в мире:
Источник
Математика
Закажи карту Tinkoff Junior сейчас и получи 200 ₽ на счет
С этой картой можно накопить на мечту, жми ⇒
План урока:
На уроке научимся делить столбиком на двузначное число без остатка и с остатком, повторим единицы массы, будем решать задачи.
Ребята, делить столбиком на двузначное число совсем непросто! Потребуется серьезная разминка. Проверим, кто из вас отлично знает таблицу умножения и деления. Решите примеры устно, найдите ответ и соответствующую ему букву. Запишите числа в таблицу в порядке возрастания. Какое слово получилось? Прочитайте.
Правильный ответ найдете в рубрике «Это интересно!».
Письменное деление на двузначное число
Что нужно знать и уметь, чтобы хорошо научиться делить на двузначное число? Подумайте, ребята!
Конечно, надо знать назубок таблицу умножения – это первое. А второе – уметь делить на однозначное число столбиком (уголком).
Давайте вспомним алгоритм деления на однозначное число.
Решите самостоятельно примеры уголком и проверьте себя по образцу.
А теперь рассмотрим деление уголком на двузначное число. Нам понадобится черновик. При делении на двузначное число цифру, которую мы подобрали, требуется проверить умножением. Если цифра не подошла (а такое бывает), подбираем следующую цифру, снова проверяем умножением и так далее. Все эти вычисления лучше выполнить на черновике. Например, разделим 624 на 26. Запишем пример столбиком (уголком).
Обязательно проговариваем каждый этап вычислений.
Пользуясь алгоритмом, решите самостоятельно два примера столбиком. Проговаривайте каждый этап, чтобы не допустить ошибку. Сравните с образцом.
448 : 64 952 : 34
Ребята, вы заметили, что алгоритм остается прежним? Требуется лишь больше внимания и сосредоточенности.
Попробуйте и вы, ребята, овладеть делением!
Деление на двузначное число с остатком
Действует ли при делении с остатком какой-либо другой алгоритм? Нет! При делении с остатком рассуждают точно так же, как и при делении без остатка.
Ребята, какое правило нужно знать и обязательно проверять при делении с остатком?
А теперь решите самостоятельно примеры на деление с остатком. Не забывайте сравнивать остаток с делителем, сделайте проверку.
272 : 98 495 : 46 385 : 65 321 : 47
Проверь себя.
Ребята, в каком примере вы встретили затруднение? Рассмотрим вместе пример
495 : 46
Почему в частном появился 0 (нуль)?
Первое неполное делимое 49. Делим на 46. Берем по 1. Остаток 3 меньше делителя 46. Делим верно. Сносим следующую цифру 5.
35 делим на 46. Берем по 0 (35 меньше, чем 46). Остаток 35 меньше делителя, разделили верно. Сделаем проверку, убедимся в правильности вычислений.
Уметь делить с остатком – полезный навык, который не раз поможет вам в решении практических задач. Например, для постройки одинаковых башен у вас имеется 430 деталей лего-конструктора. Сколько башен можно построить, если на каждую нужно 35 деталей? Останутся ли лишние детали?
Давайте вместе решим эту задачу.
430 разделим на 35. Сделаем это столбиком (уголком).
Мы видим, что при делении получился остаток 10. Делаем вывод: из 430 деталей лего-конструктора можно сделать 12 одинаковых башен и еще 10 деталей останется.
Разделить можно на черновике, а решение в тетради записать в строчку.
430 : 35 = 12 (ост.10) – башен можно сделать.
Ответ: 12 башен и 10 деталей останется.
Если вы хорошо умеете делить с остатком, решение можно сразу записать в тетрадь:
Решите самостоятельно практическую задачу.
Задача
Ребята 4 класса изготовили для первоклассников 126 закладок в учебники. Сколько закладок достанется каждому первокласснику, если в первом классе 25 учеников? Останутся ли лишние закладки?
Проверь себя.
Решение задач с единицами массы
Ребята, какие единицы массы вы знаете? Давайте вспомним!
Игра
В каждом столбике найди «лишнее» слово, обоснуй свой ответ.
Вспомним таблицу единиц массы.
Задача
В тепличном хозяйстве выращивают огурцы и помидоры. В первой теплице собрали 132 кг огурцов. Во второй теплице собрали 1 ц 56 кг помидоров. Урожай огурцов или помидоров богаче и на сколько килограммов?
Разберем задачу вместе.
Выразим 1 ц 56 кг в килограммах. Из таблицы видим, что 1 ц = 100 кг, значит,
1 ц 56 кг = 156 кг
156 – 132 = 14 (кг) – собрали больше помидоров, чем огурцов.
Ответ: на 14 кг больше.
Следующую задачу решите самостоятельно. Проверьте по образцу.
Задача
5 т яблок разложили в ящики по 10 кг в каждый и отправили в хранилище. 120 ящиков с яблоками развезли в магазины города. Сколько килограммов яблок осталось в хранилище.
Проверь себя.
- 5 000 : 10 = 500 (ящ.) – с яблоками отправили в хранилище.
- 500 – 120 = 380 (ящ.) – с яблоками осталось в хранилище.
- 380 ∙ 10 = 3 800 (кг) – яблок в хранилище.
Решение задачи можно записать выражением: (5 000 : 10 – 120) ∙10 = 3 800
А теперь разберем задачу, в которой встретится деление с остатком.
Задача
В хозяйстве собрали 5 ц клубники. 300 кг клубники оставили в ящиках, а остальную клубнику расфасовали в небольшие контейнеры по 300 г. Сколько контейнеров с клубникой получилось? Сколько граммов клубники осталось?
Сначала выразим 5 ц в килограммах.
Узнаем, сколько кг клубники расфасовали в контейнеры.
500 – 300 = 200 (кг) – расфасовали в контейнеры.
Выразим 200 кг в граммах.
200 кг = 200 000 г.
Разделим 200 000 на 300 столбиком.
Сделаем вывод: если в условии задачи содержатся разные единицы массы, то необходимо выразить их в одинаковых единицах.
Сегодня на уроке мы научились делить столбиком на двузначные числа с остатком и без остатка, повторили единицы массы, решали задачи.
Источник
Как доступно объяснить ребёнку суть деления чисел
Освоение арифметических действий порой даётся детям нелегко. Но если родители дошкольников, непонимающих умножение, деление, относительно спокойны: ещё есть пару лет до школы, а там — будет видно, то мамы и папы младших школьников иногда приходят в исступление от бессилия растолковать своему чаду, что значит деление чисел. На самом деле, ничего сложного для ребёнка и методически непостижимого для взрослого в этом нет.
Как объяснить деление дошкольнику
Малыши-дошколята вовлекаются в процесс деления с самого раннего возраста, например, когда угощают конфетами друзей, делятся игрушками в песочнице. Поэтому задача родителей заключается в том, чтобы обобщить этот детский опыт для освоения азов арифметики, дать понимание принципа деления, то есть разделения предметов на равные доли. При этом базовыми знаниями, необходимыми для освоения деления в дошкольном возрасте, является понимание, что такое целое, больше/меньше. Если с этими понятиями ребёнок знаком, то можно вооружаться играми и на их основе поэтапно объяснять деление.
Делим поровну
Для начала нужно показать малышу на доступном для его понимания уровне, что такое деление, используя наглядность. В этом поможет игра «Тебе и мне поровну».
Материалы для тренировки арифметических действий должны быть вкусными
- Малыш получает 6 конфет.
- Взрослый просит поделить конфеты на двоих так, чтобы у каждого было одинаковое количество.
- Ребёнок раскладывает конфеты по одной, пересчитывая их в обеих кучках.
- После того, как конфеты поделены, юный математик ещё раз пересчитывает их в каждой кучке, а затем считает, сколько сладостей всего.
- Количество «делителей» можно увеличивать, но «делимое» всегда должно делиться без остатка. Так у ребёнка формируется представление о том, что такое поровну.
Деление с остатком
Освоив деление без остатка, можно переходить к следующему этапу — игре «Всем поровну и «хвостик».
Оставшееся яблоко можно отдать взрослому или игрушке, а потому сравнить, у кого больше/меньше
- Ребёнок получает 4 яблока.
- Взрослый просит разделить их поровну между тремя членами семьи.
- Оставшееся яблоко является остатком, который получается тогда, когда поровну поделить нельзя.
Разобравшись с делением поровну и с остатком, можно переходить к освоению абстрактного деления, то есть вычислениям с использованием цифр, а не конфет-яблок-игрушек. Для этого нужно сказать, что первое число — это то, что мы делим: конфеты, игрушки, яблоки, а второе — участники этого деления, то есть члены семьи, друзья. Но главное здесь, сколько предметов в итоге будет у участников.
Видео: как освоить деление за 5–10 минут
Что нужно для освоения деления в младшем школьном возрасте
Деление — это не первое арифметическое действие, которое осваивают дети. Поэтому, прежде чем браться за «делимое-делитель-частное», нужно обязательно выяснить, знает ли ребёнок разряды чисел и понимает ли принципы:
По аналогии с таблицей умножения, существует таблица деления, которую также можно заучить. Однако методисты склоняются к тому, что гораздо важнее понимание ребёнком механизмов выпонения арифметического действия, чем механическое заучивание.
Таблицей деления дети могут проверять решения примеров
Эффективные способы объяснения деления школьникам
Все способы объяснения можно условно поделить на академичные и образные. Первые опираются на цифры, то есть записываются в виде арифметических примеров, вторые — на конкретные предметы: конфеты, мячи и т. д., которые умозрительно делятся между людьми, игрушками.
В работе с учениками начальной школы эффективным будет синтетический способ, совмещающий опору на образы и цифры одновременно.
Деление на основе знания таблицы умножения
Для понимания сути деления стоит обратиться к вычислениям с опорой на таблицу умножения.
- Записываем пример: 2 х 5 = 10.
- Берём 10 монет и просим поделить их на двоих — получается две стопки по 5 монет.
- Далее 10 монет делим на пятерых — получается 5 стопок по 2 монеты.
- Вывод — при делении мы выясняем, сколько раз каждый множитель помещается в произведении.
На этом приёме разъясняем понятийную базу: то число, которое делится, называется делимое, то число, на которое делится — делителем, а результат — частным.
Поскольку деление обратно умножению, то второе может проверить результат первого.
Первое время для закрепления навыка можно зарисовывать схему перестановки значений при делении и при проверки умножением
- Делимое делим на делитель, то есть 10 : 2.
- Получаем частное — 5.
- Проверяем умножением, то есть частное умножаем на делитель — 5 х 2.
- Получаем 10, что в исходном примере является делимым.
Деление двузначных чисел на однозначные
Чтобы разделить двузначное число, не являющееся произведением таблицы умножения, на однозначное, нужно каждую цифру делимого разделить на делитель и записать первое частное десятками, а второе — единицами. Например, 86 : 2.
- Делим 8 на 2. Получаем 4.
- Делим 6 на 2. Получаем 3.
- Ответ — 43.
- Проверяем — 43 х 2 = 86.
Деление способом группирования
Суть этого способа деления заключается в подсчёте количества групп равных делителю, которые помещаются в делимое. Результат будет частным.
- Задача состоит в распределении мячей между командами. Решаем пример — 30 : 3.
Группирование предполагает использование наглядных материалов
Как объяснить деление в столбик
Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.
Деление без остатка
- Решим пример 396 : 3.
Выполняя деление в столбик, ребёнок должен правильно оформить запись, чтобы значения «не съехали» с нужных позиций
Деление с остатком
- Решим пример 90 : 4.
Важно обратить внимание ребёнка на то, что перед добавлением нуля к остатку в столбике, нужно поставить десятичную запятую в частном
Видео: как научиться делить в столбик
Деление на двузначные числа
Если в делителе есть десятки, сотни, то для облегчения решения делитель можно упростить, разбив на единицы (десятки).
Для деления на десятки нужно воспользоваться правилом упрощения
- Решим пример — 405 : 15.
- Разобьём 15 на единицы, на 5 и 3 — их произведение равно 15.
- Теперь решаем два примера. Сначала 405 : 5. Частное 81.
- Затем 81 : 3. Частное 27.
- Результат — 405 : 15 = 27.
Видео: тренажёр быстрого деления в уме для школьников
Объяснить деление можно не только школьнику, но и дошкольнику. Причём не только в условиях детского сада, школы, но и дома. Для этого нужно убедиться, что ребёнок имеет опорные знания, и у родителя есть запас времени, терпения для регулярных занятий со своим чадом.
Источник