- Даёшь дешёвый водород. Найден упрощённый способ электролиза воды
- Томские ученые нашли способ удешевить производство водородного топлива
- Почему водород?
- Трудности производства
- Более дешевый катализатор
- Что дальше
- Перспективы и недостатки водородной энергетики
- Себестоимость производства по видам водорода, доллар за килограмм
- Водородная энергетика
- Перспективы отрасли
- Как сделать ремонт и не сойти с ума
- Преимущества водородной энергетики
- Недостатки водородной энергетики
Даёшь дешёвый водород. Найден упрощённый способ электролиза воды
Схема электролиза без мембраны: два параллельных электрода располагаются на расстоянии в несколько сотен микрометров
Не секрет, что чистый водород — один из наиболее перспективных видов альтернативного топлива. Водород добывают из любого водного раствора, а при сгорании он превращается обратно в воду, что может быть прекраснее?
Проблема только в стоимости добычи водорода. Электролиз воды предполагает, что электроды погружаются в воду, а между ними находится полимерная мембрана. Ток идёт от катода к аноду, а на своём пути он (при помощи катализатора) расщепляет воду на кислород и водород. Полимерная мембрана выполняет важную функцию, разделяя получившиеся газы.
На сегодняшний в качестве мембраны с ионной проводимостью практически повсеместно используется нафион или другой тип мембраны. Но все они отличаются дороговизной и ограниченным сроком службы. К тому, мембраны требуют особых условий проведения электролиза. Например, нафион работает в жидкости только с низкой кислотностью и только с определёнными катализаторами.
Изобретение химиков из EPFL под руководством Деметри Псалтиса (Demetri Psaltis) позволяет избавиться от этих ограничений и намного удешевить электролиз воды.
Они провели ряд экспериментов с микроустройством, размещая электроды на разном расстоянии друг от друга и прогоняя между ними воду на разной скорости. Оказалось, что при определённом расстоянии между электродами H2 и O2 сами разлетаются в разные стороны, без всякой мембраны!
Причина такого поведения ионов — эффект Сегре-Зильберберга, когда при движении жидкости находящиеся в ней частицы поток уносит в стороны.
Учёные надеются, что им удастся приспособить прибор для работы с любыми видами жидких электролитов и любыми катализаторами, поскольку больше нет риска повреждения хрупкой мембраны. Исчезнут обязательные требования использовать только благородные металлы вроде платины из-за ограничений на кислотность (pH) жидкости.
Если получится масштабировать микроустройство до промышленного образца, то это кардинально снизит стоимость водорода, получаемого при электролизе воды.
Научная работа “A membrane-less electrolyzer for hydrogen production across the pH scale” опубликована в журнале “Energy & Environmental Science”, DOI: 10.1039/C5EE00083A (зеркало).
Источник
Томские ученые нашли способ удешевить производство водородного топлива
Водород считается практически идеальным топливом, поскольку при сгорании он не выделяет вредных парниковых газов типа CO2 — только водяной пар. Эра чистого топлива, однако, еще не наступила — производить водород слишком дорого. Одна из причин в том, что в процессе используются катализаторы из благородных металлов.
Ученые Томского политехнического университета (ТПУ) нашли более доступную альтернативу металлам платиновой группы и разработали технологию получения перспективного материала — кубического карбида вольфрама. Как открытие российских исследователей приблизит повсеместное использование водородного топлива — под катом.
Почему водород?
Востребованность водорода растет, а объемы его использования удваиваются каждые 15 лет. Широкое применение этот химический элемент нашел в нефтепромышленности.
Помимо этого, водород имеет ключевое значение в так называемой декарбонизации экономики, подразумевающей уход от использования углеводородов. В качестве топлива он является одной из самых безвредных альтернатив. По оценкам BloombergNEF (BNEF), так называемый «зеленый» водород, полученный с помощью электролиза, может сократить глобальные выбросы парниковых газов до 34% к 2050 году.
На сегодняшний день объем рынка водородного топлива оценивается в $700 млрд. Во всех стратегических документах Евросоюза, принятых за последнее время, водород назван основным драйвером роста для преодоления экономического кризиса, вызванного COVID-19.
Трудности производства
Водород практически не встречается на Земле в чистом виде, элемент извлекают из других соединений в результате химических реакций. Как правило, это производство, которое экономически невыгодно либо его сложно поставить на промышленные рельсы. Ученые изучают различные способы удешевления и облегчения производства водорода. Ведь это напрямую влияет на то, как быстро мир сможет перейти на более экологичное топливо.
Производство водорода из воды. Источник
Эксперты BNEF прогнозируют, что еще до 2030 года «зеленый» водород будет стоить чуть выше $2/кг и начнет конкурировать с углем и природным газом в промышленности, например, при производстве стали. А к 2050 году химический элемент сможет конкурировать по цене с самым дешевым углем, при этом не производя ни грамма CO2.
Перспективы хорошие. Так, год назад немецкая нефтедобывающая компания Shell начала строить одну из крупнейших в мире установок по производству водорода методом электролиза. Планируется, что работать она начнет к концу года и сможет производить до 1300 тонн водорода ежегодно.
Более дешевый катализатор
Обычно при электролизе водорода используются катализаторы из металлов платиновой группы — платины, иридия, рутения и их производных. Все они причисляются к благородным металлам и являются очень дорогими.
Более дешевый аналог — кубический карбид вольфрама. Условия его производства непросты: для синтеза нужна температура под 3000°С и очень быстрое охлаждение. Но ученым Томского политехнического университета удалось разработать установку, позволяющую производить этот материал с высоким процентом чистоты (до 95 %).
Установка — коаксиальный магнитоплазменный ускоритель. Высокой температуры и сверхбыстрого охлаждения он достигает с помощью плазменных струй. Их скорость составляет более 3 км/c, а сама реакция занимает менее 1 мс. В ускоритель помещают доступные и относительно дешевые порошки вольфрама и технического углерода. В рабочей камере устройства исходные порошки в ходе плазмохимической реакции трансформируются в кубический карбид вольфрама. Результаты экспериментов ученые описали в научном журнале Journal of Alloys and Compounds.
«Полученные в ходе реакции наночастицы кубического карбида вольфрама успешно применяются в реакции получения водорода из воды. Это позволит минимизировать использование редких и дорогостоящих благородных металлов платиновой группы», — рассказывает доцент отделения электроэнергетики и электротехники ТПУ Иван Шаненков.
Иван Шаненков. Источник: ТПУ
Что дальше
Перспективность материала ученые ТПУ подтвердили вместе с китайскими исследователями из Цзилиньского университета и Университета Циндао. В будущем ученые планируют повысить каталитическую активность материала и полностью отказаться от использования дорогостоящих благородных металлов при электрокатализе водорода из воды.
Источник
Перспективы и недостатки водородной энергетики
Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.
В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.
В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.
По этим способам его разделяют на цветовые градации.
Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.
Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.
Розовый или красный — произведенный при помощи атомной энергии.
Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.
Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.
Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.
Себестоимость производства по видам водорода, доллар за килограмм
Зеленый | 10 |
Голубой | 2 $ |
Красный | 2 $ |
Серый | 2—2,5 $ |
Коричневый | 2—2,5 $ |
Водородная энергетика
На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.
В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.
Перспективы отрасли
Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.
К 2050 году МЭА планирует снизить затраты на производство этого экологически чистого вида топлива до 2 $ за килограмм, что существенно ниже нынешних 10 $. Это произойдет благодаря развитию технологий ВИЭ и удешевлению производства энергии ветра и солнца.
В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.
Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.
В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:
- поддержка пилотных проектов по производству водорода;
- стимулы для экспортеров и покупателей на внутреннем рынке;
- первые водородные установки запустят в 2024 году на атомных электростанциях, объектах добычи газа и переработки ископаемых.
В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.
Как сделать ремонт и не сойти с ума
Преимущества водородной энергетики
Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.
Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.
Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.
Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.
Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.
Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.
Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.
Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.
В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.
Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.
Недостатки водородной энергетики
Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.
При масштабировании производства электролизеров их стоимость может снизиться с текущих 1000 до 200 $/кВт к 2050 году, по оценке J. P. Morgan — даже до 100 $/кВт. При реализации такого сценария к 2050 году стоимость электролизеров может снизиться до уровня менее 2 $/кг. Но с учетом применения различных программ государственного субсидирования водородной энергетики эти сроки могут быть сокращены.
Источник