Резонансный метод беспроводной передачи электрической энергии Николы Тесла
В начале 20 века ученый Никола Тесла, уроженец Хорватии, работавший тогда в Нью-Йорке, разработал новаторский метод передачи электрической энергии на большие расстояния без проводов, с применением явления электрического резонанса, изучению которого ученый уделял тогда особое внимание. До этого он уже в достаточной степени изучил возможности переменного тока, и отчетливо понимал технические перспективы его применения, однако впереди был следующий важный шаг – система беспроводной передачи электрической энергии.
Согласно представлениям ученого, в такой системе передачи электроэнергии планета Земля выступала в роли электрического проводника, в котором с помощью электрических осцилляторов (электрических колебательных систем) можно было возбуждать стоячие волны. К данному выводу Тесла пришел благодаря наблюдениям за электрическими возмущениями, распространявшимися по поверхности земли после разрядов молний во время грозы.
Тесла зафиксировал с помощью своих приборов, что длина волн, порождаемых разрядами молний, варьируется в диапазоне от 25 до 70 километров, и что эти волны распространяются во всех направлениях земного шара. Мало того, ученый понял, что эти волны не только распространяются до самых отдаленных частей планеты, но и отражаются оттуда, и что длина волн непосредственно связана с размерами земного шара.
Тесла решил, что, создавая подобные электрические возмущения искусственным путем, можно передавать электрическую энергию во всех направлениях планеты, используя это ее свойство. Однако, несмотря на понимание наблюдаемого процесса, техническая реализация стала сложной инженерной задачей.
Требовалось обеспечить высокую скорость передачи электричества в Землю, как это происходит в природных условиях, ведь размеры планеты огромны, а возможности экспериментатора казались просто пылью по сравнению с возможностями природы.
Но, совершенствуя схемы питания своих осцилляторов, и проводя исследования в лаборатории, Тесла, в конце концов, находит решение, он вдруг понимает каким образом создать мощные электрические возмущения в Земле, чтобы скорость подачи электроэнергии не уступала природным.
Если очень качественно заземлить многовитковую катушку, длина провода в которой будет равна четверти длины волны колебаний, возбуждаемых осциллятором, и подать эти колебания на катушку, то в этой заземленной катушке возникнут колебания максимальной силы, и действие в точке заземления будет максимально возможным в силу явления электрического резонанса.
Если второй вывод такой заземленной катушки соединить с металлическим предметом достаточной кривизны, чтобы заряд не утекал в атмосферу, а также подходящей электроемкости, и поднять этот предмет на достаточную высоту, то заряд в этой верхней точке будет максимально возможным, ведь в проводе будет иметь место стоячая электрическая волна, узел которой будет находиться в точке заземления, а пучность – на другом, поднятом на высоту конце катушки. Так, экспериментируя с заземленным резонансным контуром, ученому удалось достичь движения электричества через систему со скоростью, превосходящей природную молнию.
Приемник этой энергии представлял собой воздушный (без сердечника) трансформатор, первичная обмотка которого была такой же, как передающая катушка, и тоже располагалась вертикально, также имела поднятый вверх металлический терминал, и тоже была заземлена, а вторичная катушка состояла из нескольких витков относительно толстого провода, которые располагались вблизи заземленного конца первичной обмотки, и служили для подачи энергии на потребитель.
Шагом совершенствования приемника была разработка своеобразного синхронного выпрямителя, состоящего из вращающегося коммутатора, целью работы которого была зарядка конденсатора на выходе приемной катушки, что повышало эффективность применения принятой от передатчика энергии.
Тесла особенно отмечал в своих статьях, что разработанный им метод беспроводной передачи электрической энергии основан на проводимости, а не на излучении. Если бы система была основана на излучении, то было бы просто невозможным передавать сколько-нибудь значительное количество энергии на расстояние.
Энергия в системе Тесла передавалась через землю, а поднятые терминалы, заряжаемые до очень высоких напряжений, взаимодействовали благодаря электрической проводимости воздушных слоев, и передаваемая энергия практически была доступна в любом месте планеты, благодаря электрическому резонансу.
Тесла сумел продемонстрировать это, когда ему удалось зажечь 200 ламп на расстоянии 40 километров от передатчика. Энергия не передавалась излучением, она практически регенерировалась в приемнике. Ученый утверждал, что, развив его технологию, можно будет беспроводным способом принимать электрическую энергию в любом необходимом количестве в любой точке земного шара.
Источник
Тонны электропроводов на свалку, или История создания технологии резонансной передачи энергии
Можно ли совершить революцию в электроэнергетике, где уже десятки лет не меняются принципиальные, основополагающие технологии? Если обратиться к наследию знаменитого Николы Теслы, то можно, уверены российские учёные!
Несмотря на постоянные заверения учёных о развитии беспроводных технологий передачи энергии, даже самые «британские» из них не заикаются и даже не фантазируют о перспективах беспроводной передачи СКОЛЬ-ЛИБО ЗНАЧИТЕЛЬНЫХ объёмов электричества. Поэтому «беспроводка» даже на самом пике своего развития видится лишь технологией для комфорта, применимой в слаботочных портативных и домашних устройствах, а каких-то серьёзных переворотов в энергетической отрасли от неё ждать не приходится. А изменения эти были бы ох как желательны!
Первой в истории полноценной линией электропередачи считается 170-километровая линия с мощностью 220 кВт между немецкими городами Лауфен и Франкфурт, открытая в 1891 году. И с тех пор по всей планете зарыты в землю и подвешены на столбах и опорах миллионы тонн дорогостоящих цветных металлов – меди и алюминия. И эта масса в тоннах и в денежном эквиваленте продолжает непрерывно расти за счёт развития энергосетей и их модификации, без каких-либо принципиальных изменений с того самого 1891 года, поскольку ничего нового в проводной передаче энергии от источника к потребителю учёные до сих пор породить не сумели…
Впрочем, почему не сумели? Сумели. Вот только мало кто об этом знает, а консервативность электроэнергетической отрасли столь высока, что революционная технология, как нередко и случается, может, толком не родившись, сгинуть в безвестности… Об этом «Компьютерре» рассказали в одном из многочисленных московских НИИ с неблагозвучным названием «ВИЭСХ».
— Вокруг работ Теслы упорно поддерживается флёр загадочности. «Тайны, которые он унёс с собой в могилу», «секретные архивы, похищенные некими спецслужбами» и хранимые невесть где по сей день, и т.п.… Но если отбросить все эти фантазии и опираться на то, что существует по факту и подтверждено, ничего интересного для жёлтой прессы в наследии Теслы не окажется! – рассказывает «Компьютерре» Дмитрий Семёнович Стребков, руководитель ВИЭСХ – Всероссийского исследовательского института электрификации сельского хозяйства.
— Честно говоря, популярность Николы Теслы слишком велика у разного рода мистиков, «любителей непознанного», а также литераторов и кинорежиссёров. Поэтому сегодня многие люди искренне удивляются, услышав, что этот великий учёный радикально изменил ход развития электротехники и электроэнергетики, изобретя многое из того, чем мы пользуемся и по сей день.
«А мы думали, что он занимался лишь гигантскими молниями, тунгусскими метеоритами и растворяющимися в воздухе кораблями», — удивляются обыватели, приводя в пример желтогазетные шаблоны, совершенно бездоказательно приписанные гениальному сербу. И поэтому приходится признать, что разработанные в наши дни технологии, базирующиеся на открытиях Теслы, подсознательно вызывают некий скепсис, вызывая в голове перво-наперво мысли о фокусах и мистификациях… Это явно не идёт на пользу изобретениям и их разработчикам – ну хоть вымарывай из описаний упоминание о Тесле, право слово…!
— «Последователей Теслы» сегодня в мире очень много. Но большинство из них занимаются или визуальными шоу-эффектами с генераторами молний, или чисто теоретическими изысканиями, поисками утраченных рукописей и т.д. Поэтому когда наш институт со своей разработкой был приглашён в Сербию на празднования 150-летия их знаменитого земляка, мы оказались фактически единственными, кто получил награду за ПРАКТИЧЕСКУЮ реализацию элементов его наследия!
На основе работ Теслы мы реализовали и отработали практическую технологию однопроводной резонансной линии передачи энергии. Она имеет колоссальные преимущества перед тем, что используется сегодня, поскольку позволяет передавать электрические мощности по единственному проводу, толщина которого зависит только от его механической прочности! То есть, говоря по-простому, «волоска» толщиной 0,1 мм достаточно, чтобы гнать по нему десятки и сотни киловатт электроэнергии! Сейчас же для этого применяются кабеля, вес меди в которых достигает 1,5-2 тонн на километр, и даже больше. А сколько таких километров идёт между населёнными пунктами, вдоль железных дорог, по улицам городов – страшно подумать!
— Что же представляет собой резонансная линия электропередачи с технической точки зрения?
— Для простоты понимания начну с традиционных технологий. Обычная линия электропередачи (подземная или надземная, неважно) в классическом понимании и самом простом варианте – это два (в случае двухфазной линии) провода от источника к потребителю. Толщина этих проводов имеет прямую зависимость от нагрузки и потребляемого ею тока – для 2-3 сотен ватт домашней люстры достаточно проводов с сечением 0,75 квадратных миллиметра, для нагрузки в несколько киловатт уже требуются провода по 2,5 кв. мм и более. Для разводки провода, допустим, по дачному посёлку толщина кабелей и проводов уже сопоставима, примитивно выражаясь, с толщиной пальца взрослого человека. Вес и стоимость проводов пропорционально растёт, а также растут омические потери энергии в них.
Такое ещё сойдет при разводке проводов «на последней миле», но если бы провода на ЛЭП от электростанций к городам соответствовали потребляемому городами току, то были бы они толщиной со ствол столетнего дуба, что совершенно неприемлемо. Поэтому для того, чтобы передать одну и ту же мощность по более тонким проводам, используют повышенное напряжение – тысячи вольт. При неизменной мощности напряжение растёт, а ток падает: закон Ома. Меньше ток – тоньше нужен провод. Но даже и в этом случае сечение проводов на ЛЭП огромно, вес и стоимость их грандиозны.
Что предлагаем мы: на передающей стороне трансформировать электрический ток в высокочастотный (условно высокочастотный – на деле частота не превышает 50 кГц), подать его на колебательный контур, настроенный на эту частоту, и соединить контур с аналогичным на принимающей стороне. Соединить проводом, но — одним-единственным и очень тонким по сравнению с тем, что использовался бы в классической линии передачи. В резонансном режиме в линии достигается напряжение до 100 тысяч вольт, но токи ничтожны, поэтому потери на нагрев проводника в линии минимальны и соответственно не требуется значительное сечение и масса провода. Провод годится любой, фактически даже самый тонкий волосок!
Пониманию электрика такая система не будет близка, но человек, знакомый с техникой радиосвязи, без труда узнает в ней упрощённые радиоприёмник и радиопередатчик, но соединённые не эфиром, а проводом.
Главные достоинства системы:
— Содержание алюминия и меди в проводах может быть радикально снижено за счёт снижения их толщины в десятки раз;
— Потери электроэнергии в однопроводной линии крайне малы по сравнению с традиционной линией;
— Большинство линий электропередач можно будет сделать подземными вместо воздушных, исключив обрывы от погодной стихии, типа ураганов или ледяных дождей, а также огромные затраты на их строительство.
Помимо этого существует немало побочных преимуществ:
— В однопроводном кабеле невозможны короткие замыкания, этот кабель не может быть причиной пожара;
— Если сделать линию электропередачи в виде стального провода (для прочности), который будет покрыт тончайшим слоем меди (для электропроводности), то такие линии совершенно непривлекательны для расхитителей цветного металла;
— Несанкционированное подключение к однопроводным линиям и кража электроэнергии почти нереальны.
— Многие революционные технологии, доходя до практической реализации, демонстрировали свою несостоятельность – из-за дороговизны, сложности, высоких требований к наладке, затрудняющих массовое тиражирование, и т.д. Что в этом смысле собой представляет беспроводная резонансная передача?
— Мы достаточно долго изучали и обкатывали эту технологию, чтобы гарантировать её легкую повторяемость и надёжность. Вот по такому проводу мы у себя в лаборатории передавали мощность в 20 киловатт! Нагрузкой служил стенд из десятков 200- и 500-ваттных ламп накаливания.
После этого под землёй на территории института была проложена линия длиной 1,2 километра, подтвердившая отсутствие зависимости эффективности от расстояния.
Сейчас мы реализовали несколько практических экспериментальных систем однопроводной передачи энергии – например, в паре сельскохозяйственных комплексов в Подмосковье, где была сделана система освещения на «однопроводке», которая представляла собой экранированный коаксиальный провод, проверенный по всем нормам СанПиН на отсутствие превышения магнитных и электрических полей.
Ещё один интересный практический эксперимент – передача энергии для оборудования электрохимической катодной защиты газопроводов, который мы осуществили совместно с Газпромом. Дело в том, что на всех газо- и нефтепроводах обязательно через каждый 10 километров стоят станции катодной защиты, чуть с бОльшим интервалом – автоматика, задвижки и т.д. Для питания этого оборудования вдоль трубы пускают трёхфазную ЛЭП, которая представляет собой головную боль для нефтяников и газовиков, поскольку на большом протяжении она проходит по ненаселённым районам, сильно подвержена стихиям и труднодоступна для ремонта.
Мы взяли один из фазных проводов этой ЛЭП и использовали его как однопроводную линию на отдельном участке, продемонстрировав эффективность и огромную экономию меди, поскольку стандартно там идут 3 провода сечением по 70 «квадратов». Потом на этом же участке мы пустили ту же энергию по 1-миллиметровому проводу в коаксиальной оболочке, да ещё и с ничтожными потерями около 2 процентов. То есть толстенные медные и алюминиевые кабели оказались не нужны, а если тонкий провод закопать в землю, то и проблемы с защищённостью электроснабжения газопровода исчезают в принципе! Ещё один подобный эксперимент мы планируем совместно с Транснефтью.
— Сегодня технологии развиваются достаточно быстро, и как только появляется что-то новое, имеющее принципиально лучшие свойства, оно быстро вытесняет прежнее. Ну или как минимум внедряется наравне с ним, если новое, скажем, хотя и лучше, но существенно дороже. Почему же однопроводные линии не распространены повсеместно, при всех их достоинствах?
— Для начала внедрения таких линий требуется огромный комплект документов – сертификаты, надзорные акты, протоколы Роспотребнадзора, межведомственных испытаний и т.д. Но чтобы их получить, нужна реально действующая линия, на постройку которой у института средств нет. А то, что мы уже сделали в качестве наглядных экспериментов, хотя и демонстрирует эффективность, но для целей сертификации не годится по ряду причин…
При этом, несмотря на то что у производителей энергии и у электросетевых компаний имеются огромные средства на разного рода инновации, основополагающие технологии этими инновациями, как правило, не затрагиваются. Энергетика — крайне консервативная область, в ней изменения происходят за десятки лет, поскольку сфера эта очень финансовоёмкая и слишком много вкладывается в определённые технические решения и их реализацию…
Источник