Решите уравнение двумя способами аналитическим способом

Аналитический способ решения квадратных уравнений с параметром

Конкурс на лучшую методическую разработку руководящих и

педагогических работников образовательных организаций, подведомственных

Управлению образованием Асбестовского городского округа,

в 2018-2019 учебном году

Муниципальное бюджетное общеобразовательное учреждение

«Средняя общеобразовательная школа №2»

Асбестовского городского округа

Технологическая карта конструкта урока по реализации ФГОС.

Тема работы: Аналитический способ решения квадратных уравнений с параметром.

Форма представления в очном этапе: мастер-класс.

Санникова Ксения Николаевна

I квалификационная категория

Асбестовский городской округ

2018-2019 учебный год

План проведения мероприятия_________________________________________________6-14

Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры у школьников, но их решение вызывает у них значительные затруднения. Это связано с тем, что каждое уравнение или неравенство с параметрами представляет собой целый класс обычных уравнений и неравенств, для каждого из которых должно быть получено решение. Несмотря на то, что программа по математике средней общеобразовательной школы не упоминает в явном виде о задачах с параметрами, было бы ошибкой утверждать, что вопрос о решении задач с параметрами никоим образом не освещается в рамках школьного курса математики. О бучающиеся начинают знакомство с параметром с 7 класса, а именно при изучении линейных уравнений вида ax = b , далее 8 классе при изучении квадратных уравнений ax 2 + bx + c =0 , при решении тригонометрических уравнений в 10 классе и т.д. Также в школьных учебниках по математике в последнее время всё чаще стали появляться уравнения, неравенства и системы, содержащие параметр. К тому же подобные задачи включены в ОГЭ и ЕГЭ, а анализ предыдущих результатов показывает, что школьники с большим трудом решают задания с параметром, а многие даже не приступают к ним, либо приводят громоздкие и не верные вычисления.

Поэтому, считаю, что задачам с параметрами следовало бы уделять больше внимания. Они представляют математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков, требуют от учащихся умственных и волевых усилий, развитого внимания, воспитания таких качеств, как активность, творческая инициатива.

Цель урока (образовательные, развивающие, воспитательные): познакомить учащихся с аналитическим способом решения квадратных уравнений с параметром, вывести алгоритм решения квадратных уравнений с параметром аналитическим способом, развитие умения решать задачи данного типа, воспитание мотивов учения, положительного отношения к знаниям.

Знать алгоритм решения квадратных уравнений с параметром аналитическим способом;

Уметь решать задачи данного типа;

Личностные: находчивость, активность при решении математических задач; способность к эмоциональному восприятию;
УУД, которые актуализируют/приобретут/закрепят обучающиеся в ходе урока/занятия/ мероприятия:

Личностные УУД: мотивация к обучению и целенаправленной познавательной деятельности;

Регулятивные УУД: Целеполагание; планирование;

Коммуникативные УУД: планирование учебного сотрудничества с учителем и сверстниками;

Познавательные УУД: самостоятельное выделение и формулирование познавательной цели.

Возраст участников: 8 класс.

Условия проведения мероприятия: специальных условий не требуется.

Место: учебный кабинет.

Перечень оборудования и медиа-ресурсов: интерактивная доска, проектор, ноутбук.

Оформление: тема урока напечатанная на листе А4.

Источник

Методика изучения уравнений и способов их решения.

Методика изучения уравнений и способов их решения.

Уравнение в начальном курсе математики трактуется как равенство, содержащее букву (переменную). Решить уравнение — значит узнать, при каких значениях буквы (переменной) уравнение обращается в верное числовое равенство. Значение переменной, при котором уравнение обращается в верное числовое равенство, называют решением уравнения.

В учебнике М.И. Моро учащиеся решают уравнения двумя способами: 1) способом подбора (в простейших случаях); 2) способом, основанном на применении правил нахождения неизвестных компонентов арифметических действий.

В методике формирования у младших школьников представлений об уравнении можно выделить следующие этапы:

I этап – подготовительный. На этом этапе выполняются следующие два вида упражнений: 1) решаются способом подбора примеры с «окошком» вида  + 3 = 7;  — 4 = 2; 8 —  = 5;

Читайте также:  Домашний способ изготовления виноградного вина

2) раскрывается связь между компонентами и результатом действий сложения и вычитания (правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого).

Выполнение специальных упражнений – равенств с «окошками» является подготовкой для перехода к решению простейших уравнений вида х + 2 = 7; х — 5 = 4; 8 — х = 6, с которыми учащиеся знакомятся только во 2 классе (часть 1, с.68).

II этап – знакомство с уравнением и овладение способом его решения.

Введение понятия «уравнение» фактически сводится к замене «окошка» латинской буквой х и к введению термина «неизвестное число».

Ознакомление с уравнением можно начать с рассмотрением равенства с «окошком»:  + 4 = 7

К какому числу надо прибавить 4, чтобы получилось 7?

(Вместо «окошка» учащиеся подставляют одно за другим числа 0, 1, 2, 3, пока не найдут такое, которое подходит, чтобы получилось верное равенство).

Учитель объясняет, что в математике принято обозначать неизвестное число латинской буквой х (вставляет х в окошко).

х + 4 = 7 – это уравнение.

Решить уравнение – значит найти неизвестное число.

Чему равно неизвестное число в данном уравнении? (3).

На данном этапе очень важно сформировать осознанный и математически верный подход к решению уравнений, чтобы ученик сразу ориентировался на то, что подобранное им число он должен проверить, т.е. подставить его и выяснить, верное или неверное числовое равенство при этом получится.

Сначала уравнения решаются способом подбора (учащиеся могут при этом воспользоваться как знанием состава числа, так и вычислительными приемами сложения или вычитания в пределах 10).

Используя способ подбора, учащиеся смогут справиться и с решением уравнений на нахождение неизвестного уменьшаемого или вычитаемого. Например, 9 – х = 7. (Подставим вместо х один: 9 — 1  7, х  1; подставим число 2: 9 – 2 = 7, х = 2).

Аналогично в 3 классе вводятся уравнения вида х • 3 = 12, 5 • х = 10, х : 2 = 4, 6 : х = 3, которые также вначале решаются подбором с использованием табличных случаев умножения и деления.

Позднее, когда учащиеся усвоят знания связей между компонентами и результатами арифметических действий уравнения начинают решать на основе знаний правил нахождения неизвестного компонента.

Для решения уравнений вторым способом с помощью правила предлагается такое уравнение, которое дети не могут быстро решить способом подбора, например: х + 13 = 71.

Решение уравнения оформляется следующим образом:

х + 13 = 71 х — 5 = 27 32 — х = 8

х = 71 — 13 х = 27 + 5 х = 32 — 8

58 + 13 = 71 32 — 5 = 27 32 — 24 = 8

71 = 71 27 = 27 8 = 8

14 • х = 28 х : 6 = 12 48 : х = 4

х = 28 : 14 х = 12 • 6 х = 48 : 4

14 • 2 = 28 72 : 6 = 12 48 : 12 = 4

28 = 28 12 = 12 4 = 4

Ученики объясняют решение уравнения х + 13 = 71 так: читаю уравнение х плюс 13 равно 71 (сумма чисел х и 13 равна 71; х увеличить на 13 получится 71). В уравнении неизвестно первое слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть второе слагаемое. Из 71 вычтем 13, получим 58. Значит, х равен 58. Проверим: к 58 прибавим 13, получим 71. Получилось верное равенство 71 = 71, значит уравнение решено правильно .( 3 кл. ч 2 с. 20- объяснить самост)

Особенности ознакомления с уравнениями в курсе Л.Г. Петерсон

В 1 классе (часть 3, уроки 11 — 18) решаются уравнения на сложение и вычитание с фигурами, линиями и числами на основе взаимосвязи между частью и целым. Для решения этих уравнений достаточно применить уже известные учащимся правила:

Целое равно сумме частей.

Чтобы найти часть надо из целого вычесть другую часть.

На уроке 11 вводится понятие уравнения. Перед этим в устные упражнения целесообразно включать примеры с «окошками», решаемые на основе взаимосвязи «часть — целое»:

Затем рассматриваются способ решения уравнений на основе понятий «целое» и «части»:

1) х + 4 = 8 х и 4 — части, 8 — целое.

х = 8 — 4 Ищем часть, поэтому из целого вычитаем другую часть.

Читайте также:  Способ утепления мансардной крыши

Во втором классе во второй части (урок 1) рассматриваются уравнений нового вида с умножением и делением (а • х = b , х : а = b , а : х = b .)

Учащиеся знакомятся еще с новым способом решения таких уравнений на основе правил на нахождение стороны и площади прямоугольника.

Для решения уравнений данного вида нельзя использовать правила о части и целом, так как второй множитель ( х • 4 = 12 ) — это не часть, а количество равных частей, на которое разбито целое.

В 3 классе (часть 1, урок 10) дается определение уравнения и корня уравнения; показывается решение уравнений на основе правил нахождения неизвестных компонентов действий:

— Если в равенство, содержащее переменную, подставить какое-нибудь число, то может получиться верное или неверное высказывание. Например, при x = 3 равенство x + 2 = 5 будет верным, а при x = 8 — неверным.

— Уравнением называют равенство, содержащее переменную, значение которой надо найти.

— Значение переменной, при котором из уравнения получается верное равенство, называют корнем уравнения. Решить уравнение — значит найти все его корни (или убедиться, что их нет).

Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Неизвестно уменьшаемое. Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Неизвестен множитель. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Неизвестно делимое. Чтобы найти неизвестное делимое, надо делитель умножить на частное.

Неизвестен делитель. Чтобы найти неизвестный делитель, надо делимое разделить на частное.

Затем решаются уравнения более сложной структуры, которые после упрощения числовых выражений в правой части, сводятся к известным случаям: (х + 3) : 8 = 5.При решении таких уравнений рассуждаем так: 1) последнее действие – деление, значит задано частное. 2) неизвестное в делимом, чтобы найти неизвестное делимое, надо частное умножить на делитель: х + 3 = 5 8; х + 3 = 40.

3) получили сумму, неизвестно первое слагаемое, чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое: х = 40 – 3; х = 37. Проверка: (37 + 3) : 8 = 5; 5 = 5.

Источник

Системы уравнений

Прежде чем перейти к разбору как решать системы уравнений, давайте разберёмся, что называют системой уравнений с двумя неизвестными.

Системой уравнений называют два уравнения с двумя неизвестными (чаще всего неизвестные в них называют « x » и « y »), которые объединены в общую систему фигурной скобкой.

Например, система уравнений может быть задана следующим образом.

x + 5y = 7
3x − 2y = 4

Чтобы решить систему уравнений, нужно найти и « x », и « y ».

Как решить систему уравнений

Существуют два основных способа решения систем уравнений. Рассмотрим оба способа решения.

Способ подстановки
или
«железобетонный» метод

Первый способ решения системы уравнений называют способом подстановки или «железобетонным».

Название «железобетонный» метод получил из-за того, что с помощью этого метода практически всегда можно решить систему уравнений. Другими словами, если у вас не получается решить систему уравнений, всегда пробуйте решить её методом подстановки.

Разберем способ подстановки на примере.

x + 5y = 7
3x − 2y = 4

Выразим из первого уравнения « x + 5y = 7 » неизвестное « x ».

Чтобы выразить неизвестное, нужно выполнить два условия:

  • перенести неизвестное, которое хотим выразить, в левую часть уравнения;
  • разделить и левую и правую часть уравнения на нужное число так, чтобы коэффициент при неизвестном стал равным единице.

Перенесём в первом уравнении « x + 5 y = 7 » всё что содержит « x » в левую часть, а остальное в правую часть по правилу переносу.

При « x » стоит коэффициент равный единице, поэтому дополнительно делить уравнение на число не требуется.

x = 7 − 5y
3x − 2y = 4

Теперь, вместо « x » подставим во второе уравнение полученное выражение
« x = 7 − 5y » из первого уравнения.

x = 7 − 5y
3(7 − 5y) − 2y = 4

Подставив вместо « x » выражение « (7 − 5y) » во второе уравнение, мы получили обычное линейное уравнение с одним неизвестным « y ». Решим его по правилам решения линейных уравнений.

Читайте также:  Растровая графика способ хранения изображения

Чтобы каждый раз не писать всю систему уравнений заново, решим полученное уравнение « 3(7 − 5y) − 2y = 4 » отдельно. Вынесем его решение отдельно с помощью обозначения звездочка (*) .

x = 7 − 5y
3(7 − 5y) − 2y = 4 (*)

Мы нашли, что « y = 1 ». Вернемся к первому уравнению « x = 7 − 5y » и вместо « y » подставим в него полученное числовое значение. Таким образом можно найти « x ». Запишем в ответ оба полученных значения.

x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1

Ответ: x = 2; y = 1

Способ сложения

Рассмотрим другой способ решения системы уравнений. Метод называется способ сложения. Вернемся к нашей системе уравнений еще раз.

x + 5y = 7
3x − 2y = 4

По правилам математики уравнения системы можно складывать. Наша задача в том, чтобы сложив исходные уравнения, получить такое уравнение, в котором останется только одно неизвестное.

Давайте сейчас сложим уравнения системы и посмотрим, что из этого выйдет.

При сложения уравнений системы левая часть первого уравнения полностью складывается с левой частью второго уравнения, а правая часть полностью складывается с правой частью.

x + 5y = 7 (x + 5y) + (3x − 2y) = 7 + 4
+ => x + 5y + 3x − 2y = 11
3x − 2y = 4 4x + 3y = 11

При сложении уравнений мы получили уравнение « 4x + 3y = 11 ». По сути, сложение уравнений в исходном виде нам ничего не дало, так как в полученном уравнении мы по прежнему имеем оба неизвестных.

Вернемся снова к исходной системе уравнений.

x + 5y = 7
3x − 2y = 4

Чтобы при сложении неизвестное « x » взаимноуничтожилось, нужно сделать так, чтобы в первом уравнении при « x » стоял коэффициент « −3 ».

Для этого умножим первое уравнение на « −3 ».

При умножении уравнения на число, на это число умножается каждый член уравнения.

x + 5y = 7 | ·(−3)
3x − 2y = 4
x · (−3) + 5y · (−3) = 7 · (−3)
3x − 2y = 4
−3x −15y = −21
3x − 2y = 4

Теперь сложим уравнения.

−3x −15y = −21 (−3x −15y ) + (3x − 2y) = −21 + 4
+ => − 3x − 15y + 3x − 2y = −21 + 4
3x − 2y = 4 −17y = −17 |:(−17)
y = 1

Мы нашли « y = 1 ». Вернемся к первому уравнению и подставим вместо « y » полученное числовое значение и найдем « x ».

x = 7 − 5y
y = 1
x = 7 − 5 · 1
y = 1
x = 2
y = 1

Ответ: x = 2; y = 1

Пример решения системы уравнения
способом подстановки

Выразим из первого уравнения « x ».

x = 17 + 3y
x − 2y = −13

Подставим вместо « x » во второе уравнение полученное выражение.

x = 17 + 3y
(17 + 3y) − 2y = −13 (*)

Подставим в первое уравнение полученное числовое значение « y = −30 » и найдем « x ».

x = 17 + 3y
y = −30
x = 17 + 3 · (−30)
y = −30
x = 17 −90
y = −30
x = −73
y = −30

Ответ: x = −73; y = −30

Пример решения системы уравнения
способом сложения

Рассмотрим систему уравнений.

3(x − y) + 5x = 2(3x − 2)
4x − 2(x + y) = 4 − 3y

Раскроем скобки и упростим выражения в обоих уравнениях.

3x − 3y + 5x = 6x − 4
4x − 2x − 2y = 4 − 3y
8x − 3y = 6x − 4
2x −2y = 4 − 3y
8x − 3y − 6x = −4
2x −2y + 3y = 4
2x − 3y = −4
2x + y = 4

Мы видим, что в обоих уравнениях есть « 2x ». Наша задача, чтобы при сложении уравнений « 2x » взаимноуничтожились и в полученном уравнении осталось только « y ».

Для этого достаточно умножить первое уравнение на « −1 ».

2x − 3y = −4 | ·(−1)
2x + y = 4
2x · (−1) − 3y · (−1) = −4 · (−1)
2x + y = 4
−2x + 3y = 4
2x + y = 4

Теперь при сложении уравнений у нас останется только « y » в уравнении.

−2x + 3y = 4 (−2x + 3y ) + (2x + y) = 4 + 4
+ => − 2x + 3y + 2x + y = 4 + 4
2x + y = 4 4y = 8 | :4
y = 2

Подставим в первое уравнение полученное числовое значение « y = 2 » и найдем « x ».

Источник

Оцените статью
Разные способы