- Решение уравнений методом сложения по математике
- Где можно решить систему уравнений онлайн методом сложения?
- Решение задач по математике онлайн
- Калькулятор онлайн. Решение системы двух линейных уравнений с двумя переменными. Метод подстановки и сложения.
- Немного теории.
- Решение систем линейных уравнений. Способ подстановки
- Решение систем линейных уравнений способом сложения
- Решите систему уравнений методом алгебраического сложения x²+2y²=5 y²-x²=-2
- Ответ или решение 2
- Алгоритм решения системы уравнений методом алгебраического сложения
- Решаем систему уравнений
Решение уравнений методом сложения по математике
Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Системой уравнений называют два и более уравнения, содержащих несколько неизвестных, объединенных фигурной скобкой. Существует несколько способов решения системы уравнений, одним из которых является метод сложения. Его суть заключается в том, чтобы после выполнения операции сложения исходная система уравнений приобрела такой вид, в котором будет только одна неизвестная. При сложении уравнений левая и правая часть первого и второго уравнения складываются в полном объеме.
Для наглядности решим систему уравнений следующего вида:
\[\left\ <\begin
Выполним упрощение уравнения с помощью раскрытия скобок:
\[\left\ <\begin
\[\left\ <\begin
Из полученного результата видно, что в 1 и 2 уравнении есть \[2x.\] Теперь нам необходимо сделать все, чтобы остался только \[y.\] Выполним умножение 1го уравнения на -1:
\[\left\ <\begin
Далее произведем сложение уравнений:
\[\left\ <\begin
После сложения и выполнения простых операций мы получили значение \[y=2.\] Подставим его в 1е уравнение:
\[\left\ <\begin
Где можно решить систему уравнений онлайн методом сложения?
Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!
Источник
Решение задач по математике онлайн
//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘
Калькулятор онлайн.
Решение системы двух линейных уравнений с двумя переменными.
Метод подстановки и сложения.
С помощью данной математической программы вы можете решить систему двух линейных уравнений с двумя переменными методом подстановки и методом сложения.
Программа не только даёт ответ задачи, но и приводит подробное решение с пояснениями шагов решения двумя способами: методом подстановки и методом сложения.
Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.
Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.
В качестве переменной может выступать любая латинсая буква.
Например: \( x, y, z, a, b, c, o, p, q \) и т.д.
При вводе уравнений можно использовать скобки. При этом уравнения сначала упрощаются. Уравнения после упрощений должны быть линейными, т.е. вида ax+by+c=0 с точностью порядка следования элементов.
Например: 6x+1 = 5(x+y)+2
В уравнениях можно использовать не только целые, но также и дробные числа в виде десятичных и обыкновенных дробей.
Правила ввода десятичных дробей.
Целая и дробная часть в десятичных дробях может разделяться как точкой так и запятой.
Например: 2.1n + 3,5m = 55
Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.
Знаменатель не может быть отрицательным.
При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Примеры.
-1&2/3y + 5/3x = 55
2.1p + 55 = -2/7(3,5p — 2&1/8q)
Решить систему уравнений
Немного теории.
Решение систем линейных уравнений. Способ подстановки
Последовательность действий при решении системы линейных уравнений способом подстановки:
1) выражают из какого-нибудь уравнения системы одну переменную через другую;
2) подставляют в другое уравнение системы вместо этой переменной полученное выражение;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ \left\< \begin
Выразим из первого уравнения y через x: y = 7-3x. Подставив во второе уравнение вместо y выражение 7-Зx, получим систему:
$$ \left\< \begin
Нетрудно показать, что первая и вторая системы имеют одни и те же решения. Во второй системе второе уравнение содержит только одну переменную. Решим это уравнение:
$$ -5x+2(7-3x)=3 \Rightarrow -5x+14-6x=3 \Rightarrow -11x=-11 \Rightarrow x=1 $$
Подставив в равенство y=7-3x вместо x число 1, найдем соответствующее значение y:
$$ y=7-3 \cdot 1 \Rightarrow y=4 $$
Пара (1;4) — решение системы
Системы уравнений с двумя переменными, имеющие одни и те же решения, называются равносильными. Системы, не имеющие решений, также считают равносильными.
Решение систем линейных уравнений способом сложения
Рассмотрим еще один способ решения систем линейных уравнений — способ сложения. При решении систем этим способом, как и при решении способом подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.
Последовательность действий при решении системы линейных уравнений способом сложения:
1) умножают почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами;
2) складывают почленно левые и правые части уравнений системы;
3) решают получившееся уравнение с одной переменной;
4) находят соответствующее значение второй переменной.
Пример. Решим систему уравнений:
$$ \left\< \begin
В уравнениях этой системы коэффициенты при y являются противоположными числами. Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной 3x=33. Заменим одно из уравнений системы, например первое, уравнением 3x=33. Получим систему
$$ \left\< \begin
Из уравнения 3x=33 находим, что x=11. Подставив это значение x в уравнение \( x-3y=38 \) получим уравнение с переменной y: \( 11-3y=38 \). Решим это уравнение:
\( -3y=27 \Rightarrow y=-9 \)
Таким образом мы нашли решение системмы уравнений способом сложения: \( x=11; y=-9 \) или \( (11; -9) \)
Воспользовавшись тем, что в уравнениях системы коэффициенты при y являются противоположными числами, мы свели ее решение к решению равносильной системы (сумировав обе части каждого из уравнений исходной симтемы), в которой одно из уравнений содержит только одну переменную.
Источник
Решите систему уравнений методом алгебраического сложения x²+2y²=5 y²-x²=-2
Ответ или решение 2
Решаем систему уравнений методом алгебраического сложения
Алгоритм решения системы уравнений методом алгебраического сложения
- коэффициенты в двух уравнениях при переменной х взаимно противоположный, сложим почленно уравнения;
- решим полученное уравнение с одной переменной;
- подставим найденное значение переменной во второе уравнение системы и найдем значение второй переменной.
Решаем систему уравнений
Сложим почленно первое со вторым уравнением и запишем его вместо второго уравнения системы.
Решаем полученное второе уравнение системы:
Приведем подобные слагаемые в обеих частях уравнения, используя правило приведение подобных слагаемых.
Разделим на 3 обе части уравнения, получим:
Извлечем квадратный корень из обеих частей уравнения:
В результате мы получим совокупность систем.
Подставим в первое уравнение системы найденное значение переменной у и найдем значение переменной х.
Решаем полученные уравнения.
2) второе уравнение имеет те же корни:
Ответ: (√3; 1); (- √3; 1); (√3; — 1) и (- √3; — 1).
Для того чтобы решить данную систему уравнений методом сложений необходимо к первому уравнению системы добавить второе и сократить подобные, имеем:
x^2 + 2y^2 + y^2 — x^2 = 5 — 2;
3y^2 = 3, y^2 = 3/3, y^2 = 1, y1 = √1, y2 = — √1, y1 = 1, y2 = — 1;
Подставим в первое уравнение системы x^2 + 2y^2 = 5 найденные значения y и выразим x, как мы видим в уравнении Y находится в квадрате, а у нас y равняется отрицательному и положительному значению единицы которое в квадрате все равно даст 1, поэтому подставим только одно значение:
x^2 + 2y^2 = 5, x^2 + 2 * 1 = 5, x^2 = 3, х1 = √3, х2 = — √3.
Источник