- Задачи на дроби
- Выражение части в долях целого
- Нахождение дроби от числа
- Нахождение числа по его дроби
- Как решать дроби. Решение дробей.
- Как решать дроби. Примеры.
- Приведение дроби к общему знаменателю
- Действия с дробями: правила, примеры, решения
- Правила выполнения действий с числовыми дробями общего вида
- Обоснование правил
- Примеры
- Выполнение действие с дробями, содержащими переменные
- Примеры сложения и вычитания дробей с переменными
- Примеры умножения дробей с переменными
- Деление
- Возведение в степень
- Порядок выполнения действий с дробями
Задачи на дроби
Выражение части в долях целого
Чтобы выразить часть в долях целого, нужно часть разделить на целое.
Задача. В классе 30 учащихся, отсутствуют четверо. Какая часть учащихся отсутствует?
Ответ: В классе отсутствует учащихся.
Нахождение дроби от числа
Для решения задач, в которых требуется найти часть целого справедливо следующее правило:
Если часть целого выражена дробью, то чтобы найти эту часть, можно целое разделить на знаменатель дроби и результат умножить на её числитель.
Задача 1. Было 600 рублей, этой суммы истратили. Сколько денег истратили?
Решение: Чтобы найти от 600 рублей, надо эту сумму разделить на 4 части, тем самым мы узнаем, сколько денег составляет одна четвёртая часть:
Ответ: Истратили 150 рублей.
Задача 2. Было 1000 рублей, этой суммы истратили. Сколько денег было истрачено?
Решение: Из условия задачи мы знаем, что 1000 рублей состоит из пяти равных частей. Сначала найдём сколько рублей составляет одна пятая часть от 1000, а затем узнаем сколько рублей составляют две пятых:
1) 1000 : 5 = 200 (р.) — одна пятая часть.
2) 200 · 2 = 400 (р.) — две пятых части.
Эти два действия можно объединить:
1000 : 5 · 2 = 400 (р.).
Ответ: Было истрачено 400 рублей.
Второй способ нахождения части целого:
Чтобы найти часть целого, можно умножить целое на дробь, выражающую эту часть целого.
Задача 3. По уставу кооператива, для правомочности отчётного собрания на нём должно присутствовать не менее членов организации. В кооперативе 120 членов. При каком составе может состояться отчётное собрание?
Ответ: Отчётное собрание может состояться при наличии 80 членов организации.
Нахождение числа по его дроби
Для решения задач, в которых требуется найти целое по его части справедливо следующее правило:
Если часть искомого целого выражена дробью, то чтобы найти это целое, можно данную часть разделить на числитель дроби и результат умножить на её знаменатель.
Задача 1. Потратили 50 рублей, это составило от первоначальной суммы. Найдите первоначальную сумму денег.
Решение: Из описания задачи мы видим, что 50 рублей в 6 раз меньше первоначальной суммы, т. е. первоначальная сумма в 6 раз больше, чем 50 рублей. Чтобы найти эту сумму, надо 50 умножить на 6:
Ответ: Первоначальная сумма — 300 рублей.
Задача 2. Потратили 600 рублей, это составило от первоначальной суммы денег. Найдите первоначальную сумму.
Решение: Будем считать, что искомое число состоит из трёх третьих долей. По условию две трети числа равны 600 рублей. Сначала найдём одну треть от первоначальной суммы, а затем сколько рублей составляют три третьих (первоначальная сумма):
600 : 2 · 3 = 900 (р.).
Ответ: Первоначальная сумма — 900 рублей.
Второй способ нахождения целого по его части:
Чтобы найти целое по величине выражающей его часть, можно разделить эту величину на дробь, выражающую данную часть.
Задача 3. Отрезок AB, равный 42 см, составляет длины отрезка CD. Найти длину отрезка CD.
Ответ: Длина отрезка CD 70 см.
Задача 4. В магазин привезли арбузы. До обеда магазин продал , после обеда —
привезённых арбузов, и осталось продать 80 арбузов. Сколько всего арбузов привезли в магазин?
Решение: Сначала узнаем, какую часть от привезённых арбузов составляет число 80. Для этого примем за единицу общее количество привезённых арбузов и вычтем из неё то количество арбузов, которое получилось реализовать (продать):
Итак, мы узнали, что 80 арбузов составляет от общего количества привезённых арбузов. Теперь узнаем сколько арбузов от общего количества составляет
, а затем сколько арбузов составляют
(количество привезённых арбузов):
2) 80 : 4 · 15 = 300 (арбузов).
Ответ: Всего в магазин привезли 300 арбузов.
Источник
Как решать дроби. Решение дробей.
В статье покажем, как решать дроби на простых понятных примерах. Разберемся, что такое дробь и рассмотрим решение дробей!
Понятие дроби вводится в курс математики начиная с 6 класса средней школы.
Дроби имеют вид : ±X/Y, где Y — знаменатель, он сообщает на сколько частей разделили целое, а X — числитель, он сообщает, сколько таких частей взяли. Для наглядности возьмем пример с тортом:
В первом случае торт разрезали поровну и взяли одну половину, т.е. 1/2. Во втором случае торт разрезали на 7 частей, из которых взяли 4 части, т.е. 4/7.
Если часть от деления одного числа на другое не является целым числом, ее записывают в виде дроби.
Например, выражение 4:2 = 2 дает целое число, а вот 4:7 нацело не делится, поэтому такое выражение записывается в виде дроби 4/7.
Иными словами дробь — это выражение, которое обозначает деление двух чисел или выражений, и которое записывается с помощью дробной черты.
Если числитель меньше знаменателя — дробь является правильной, если наоборот — неправильной. В состав дроби может входить целое число.
Например, 5 целых 3/4.
Данная запись означает, что для того, чтобы получить целую 6 не хватает одной части от четырех.
Если вы хотите запомнить, как решать дроби за 6 класс, вам надо понять, что решение дробей, в основном, сводится к понимаю нескольких простых вещей.
- Дробь по сути это выражение доли. То есть числовое выражение того, какую часть составляет данное значение от одного целого. К примеру дробь 3/5 выражает, что, если мы поделили что то целое на 5 частей и количество долей или частей это этого целого — три.
- Дробь может быть меньше 1, например 1/2(или по сути половина), тогда она правильная. Если дробь больше 1, к примеру 3/2(три половины или один с половиной), то она неправильная и для упрощения решения, нам лучше выделить целую часть 3/2= 1 целая 1/2.
- Дроби это такие же числа, как 1, 3, 10, и даже 100, только числа это не целые а дробные. С ними можно выполнять все те же операции, что с числами. Считать дроби не сложнее, и далее на конкретных примерах мы это покажем.
Как решать дроби. Примеры.
К дробям применимы самые разные арифметические операции.
Приведение дроби к общему знаменателю
Например, необходимо сравнить дроби 3/4 и 4/5.
Чтобы решить задачу, сначала найдем наименьший общий знаменатель, т.е. наименьшее число, которое делится без остатка на каждый из знаменателей дробей
Наименьший общий знаменатель(4,5) = 20
Затем знаменатель обоих дробей приводится к наименьшему общему знаменателю
Ответ: 15/20 Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:
Должна признаться, что решать дроби — это мое самое любимое математическое действие. Это тема, которую я понимаю без вопросов. Можно сказать, хлебом не корми, дай только дроби порешать )))
Дроби я тоже люблю. Умножать и делить их — милое дело. Вообще мне кажется, что с решением дробей мало у кого могут быть проблемы, потому что все довольно просто. Есть в математике огромное количество гораздо более сложных вещей, чем дроби решать.
Я вообще не умею решать дроби, но понятие немного есть. И поэтому стараюсь как можно скорее научиться решать дроби как дважды два четыре. Мне легче с формулами сложные примеры решить чем решать дроби!
говорит та самая красотка которая не навидит дроби
Источник
Действия с дробями: правила, примеры, решения
Данная статья рассматривает действия над дробями. Будут сформированы и обоснованы правила сложения, вычитания, умножения, деления или возведения в степень дробей вида A B , где A и B могут быть числами, числовыми выражениями или выражениями с переменными. В заключении будут рассмотрены примеры решения с подробным описанием.
Правила выполнения действий с числовыми дробями общего вида
Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 3 5 , 2 , 8 4 , 1 + 2 · 3 4 · ( 5 — 2 ) , 3 4 + 7 8 2 , 3 — 0 , 8 , 1 2 · 2 , π 1 — 2 3 + π , 2 0 , 5 ln 3 , то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.
Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:
- При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: a d ± c d = a ± c d , значения a , c и d ≠ 0 являются некоторыми числами или числовыми выражениями.
- При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом a b ± c d = a · p ± c · r s , где значения a , b ≠ 0 , c , d ≠ 0 , p ≠ 0 , r ≠ 0 , s ≠ 0 являются действительными числами, а b · p = d · r = s . Когда p = d и r = b , тогда a b ± c d = a · d ± c · d b · d .
- При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим a b · c d = a · c b · d , где a , b ≠ 0 , c , d ≠ 0 выступают в роли действительных чисел.
- При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: a b : c d = a b · d c .
Обоснование правил
Существуют следующие математические моменты, на которые следует опираться при вычислении:
- дробная черта означает знак деления;
- деление на число рассматривается как умножение на его обратное значение;
- применение свойства действий с действительными числами;
- применение основного свойства дроби и числовых неравенств.
С их помощью можно производить преобразования вида:
a d ± c d = a · d — 1 ± c · d — 1 = a ± c · d — 1 = a ± c d ; a b ± c d = a · p b · p ± c · r d · r = a · p s ± c · e s = a · p ± c · r s ; a b · c d = a · d b · d · b · c b · d = a · d · a · d — 1 · b · c · b · d — 1 = = a · d · b · c · b · d — 1 · b · d — 1 = a · d · b · c b · d · b · d — 1 = = ( a · c ) · ( b · d ) — 1 = a · c b · d
Примеры
В предыдущем пункте было сказано про действия с дробями. Именно после этого дробь нуждается в упрощении. Подробно эта тема была рассмотрена в пункте о преобразовании дробей.
Для начала рассмотрим пример сложения и вычитания дробей с одинаковым знаменателем.
Даны дроби 8 2 , 7 и 1 2 , 7 , то по правилу необходимо числитель сложить, а знаменатель переписать.
Решение
Тогда получаем дробь вида 8 + 1 2 , 7 . После выполнения сложения получаем дробь вида 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 . Значит, 8 2 , 7 + 1 2 , 7 = 8 + 1 2 , 7 = 9 2 , 7 = 90 27 = 3 1 3 .
Ответ: 8 2 , 7 + 1 2 , 7 = 3 1 3
Имеется другой способ решения. Для начала производится переход к виду обыкновенной дроби, после чего выполняем упрощение. Это выглядит таким образом:
8 2 , 7 + 1 2 , 7 = 80 27 + 10 27 = 90 27 = 3 1 3
Произведем вычитание из 1 — 2 3 · log 2 3 · log 2 5 + 1 дроби вида 2 3 3 · log 2 3 · log 2 5 + 1 .
Так как даны равные знаменатели, значит, что мы выполняем вычисление дроби при одинаковом знаменателе. Получим, что
1 — 2 3 · log 2 3 · log 2 5 + 1 — 2 3 3 · log 2 3 · log 2 5 + 1 = 1 — 2 — 2 3 3 · log 2 3 · log 2 5 + 1
Имеются примеры вычисления дробей с разными знаменателями. Важный пункт – это приведение к общему знаменателю. Без этого мы не сможем выполнять дальнейшие действия с дробями.
Процесс отдаленно напоминает приведение к общему знаменателю. То есть производится поиск наименьшего общего делителя в знаменателе, после чего добавляются недостающие множители к дробям.
Если складываемые дроби не имеют общих множителей, тогда им может стать их произведение.
Рассмотрим на примере сложения дробей 2 3 5 + 1 и 1 2 .
Решение
В данном случае общим знаменателем выступает произведение знаменателей. Тогда получаем, что 2 · 3 5 + 1 . Тогда при выставлении дополнительных множителей имеем, что к первой дроби он равен 2 , а ко второй 3 5 + 1 . После перемножения дроби приводятся к виду 4 2 · 3 5 + 1 . Общее приведение 1 2 будет иметь вид 3 5 + 1 2 · 3 5 + 1 . Полученные дробные выражения складываем и получаем, что
2 3 5 + 1 + 1 2 = 2 · 2 2 · 3 5 + 1 + 1 · 3 5 + 1 2 · 3 5 + 1 = = 4 2 · 3 5 + 1 + 3 5 + 1 2 · 3 5 + 1 = 4 + 3 5 + 1 2 · 3 5 + 1 = 5 + 3 5 2 · 3 5 + 1
Ответ: 2 3 5 + 1 + 1 2 = 5 + 3 5 2 · 3 5 + 1
Когда имеем дело с дробями общего вида, тогда о наименьшем общем знаменателе обычно дело не идет. В качестве знаменателя нерентабельно принимать произведение числителей. Для начала необходимо проверить, имеется ли число, которое меньше по значению, чем их произведение.
Рассмотрим на примере 1 6 · 2 1 5 и 1 4 · 2 3 5 , когда их произведение будет равно 6 · 2 1 5 · 4 · 2 3 5 = 24 · 2 4 5 . Тогда в качестве общего знаменателя берем 12 · 2 3 5 .
Рассмотрим примеры умножений дробей общего вида.
Для этого необходимо произвести умножение 2 + 1 6 и 2 · 5 3 · 2 + 1 .
Решение
Следую правилу, необходимо переписать и в виде знаменателя написать произведение числителей. Получаем, что 2 + 1 6 · 2 · 5 3 · 2 + 1 2 + 1 · 2 · 5 6 · 3 · 2 + 1 . Когда дробь будет умножена, можно производить сокращения для ее упрощения. Тогда 5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10 .
Используя правило перехода от деления к умножению на обратную дробь, получим дробь, обратную данной. Для этого числитель и знаменатель меняются местами. Рассмотрим на примере:
5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 2 + 1 · 9 3 10
После чего должны выполнить умножение и упростить полученную дробь. Если необходимо, то избавиться от иррациональности в знаменателе. Получаем, что
5 · 3 3 2 + 1 : 10 9 3 = 5 · 3 3 · 9 3 10 · 2 + 1 = 5 · 2 10 · 2 + 1 = 3 2 · 2 + 1 = = 3 · 2 — 1 2 · 2 + 1 · 2 — 1 = 3 · 2 — 1 2 · 2 2 — 1 2 = 3 · 2 — 1 2
Ответ: 5 · 3 3 2 + 1 : 10 9 3 = 3 · 2 — 1 2
Данный пункт применим, когда число или числовое выражение может быть представлено в виде дроби, имеющую знаменатель, равный 1 , тогда и действие с такой дробью рассматривается отдельным пунктом. Например, выражение 1 6 · 7 4 — 1 · 3 видно, что корень из 3 может быть заменен другим 3 1 выражением. Тогда эта запись будет выглядеть как умножение двух дробей вида 1 6 · 7 4 — 1 · 3 = 1 6 · 7 4 — 1 · 3 1 .
Выполнение действие с дробями, содержащими переменные
Правила, рассмотренные в первой статье , применимы для действий с дробями, содержащими переменные. Рассмотрим правило вычитания, когда знаменатели одинаковые.
Необходимо доказать, что A , C и D ( D не равное нулю) могут быть любыми выражениями, причем равенство A D ± C D = A ± C D равноценно с его областью допустимых значений.
Необходимо взять набор переменных ОДЗ. Тогда А , С , D должны принимать соответственные значения a 0 , c 0 и d 0 . Подстановка вида A D ± C D приводит разность вида a 0 d 0 ± c 0 d 0 , где по правилу сложения получаем формулу вида a 0 ± c 0 d 0 . Если подставить выражение A ± C D , тогда получаем ту же дробь вида a 0 ± c 0 d 0 . Отсюда делаем вывод, что выбранное значение, удовлетворяющее ОДЗ, A ± C D и A D ± C D считаются равными.
При любом значении переменных данные выражения будут равны, то есть их называют тождественно равными. Значит это выражение считается доказываемым равенством вида A D ± C D = A ± C D .
Примеры сложения и вычитания дробей с переменными
Когда имеются одинаковые знаменатели, необходимо только складывать или вычитать числители. Такая дробь может быть упрощена. Иногда приходится работать с дробями, которые являются тождественно равными, но при первом взгляде это незаметно, так как необходимо выполнять некоторые преобразования. Например, x 2 3 · x 1 3 + 1 и x 1 3 + 1 2 или 1 2 · sin 2 α и sin a · cos a . Чаще всего требуется упрощение исходного выражения для того, чтобы увидеть одинаковые знаменатели.
Вычислить: 1 ) x 2 + 1 x + x — 2 — 5 — x x + x — 2 , 2 ) l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) , x — 1 x — 1 + x x + 1 .
Решение
- Чтобы произвести вычисление, необходимо вычесть дроби, которым имеют одинаковые знаменатели. Тогда получаем, что x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + 1 — 5 — x x + x — 2 . После чего можно выполнять раскрытие скобок с приведением подобных слагаемых. Получаем, что x 2 + 1 — 5 — x x + x — 2 = x 2 + 1 — 5 + x x + x — 2 = x 2 + x — 4 x + x — 2
- Так как знаменатели одинаковые, то остается только сложить числители, оставив знаменатель: l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) = l g 2 x + 4 + 4 x · ( l g x + 2 )
Сложение было выполнено. Видно, что можно произвести сокращение дроби. Ее числитель может быть свернут по формуле квадрата суммы, тогда получим ( l g x + 2 ) 2 из формул сокращенного умножения. Тогда получаем, что
l g 2 x + 4 + 2 · l g x x · ( l g x + 2 ) = ( l g x + 2 ) 2 x · ( l g x + 2 ) = l g x + 2 x - Заданные дроби вида x — 1 x — 1 + x x + 1 с разными знаменателями. После преобразования можно перейти к сложению.
Рассмотрим двоякий способ решения.
Первый способ заключается в том, что знаменатель первой дроби подвергается разложению на множители при помощи квадратов, причем с ее последующим сокращением. Получим дробь вида
x — 1 x — 1 = x — 1 ( x — 1 ) · x + 1 = 1 x + 1
Значит, x — 1 x — 1 + x x + 1 = 1 x + 1 + x x + 1 = 1 + x x + 1 .
В таком случае необходимо избавляться от иррациональности в знаменателе.
1 + x x + 1 = 1 + x · x — 1 x + 1 · x — 1 = x — 1 + x · x — x x — 1
Второй способ заключается в умножении числителя и знаменателя второй дроби на выражение x — 1 . Таким образом, мы избавляемся от иррациональности и переходим к сложению дроби при наличии одинакового знаменателя. Тогда
x — 1 x — 1 + x x + 1 = x — 1 x — 1 + x · x — 1 x + 1 · x — 1 = = x — 1 x — 1 + x · x — x x — 1 = x — 1 + x · x — x x — 1
Ответ: 1 ) x 2 + 1 x + x — 2 — 5 — x x + x — 2 = x 2 + x — 4 x + x — 2 , 2 ) l g 2 x + 4 x · ( l g x + 2 ) + 4 · l g x x · ( l g x + 2 ) = l g x + 2 x , 3 ) x — 1 x — 1 + x x + 1 = x — 1 + x · x — x x — 1 .
В последнем примере получили, что приведение к общему знаменателю неизбежно. Для этого необходимо упрощать дроби. Для сложения или вычитая всегда необходимо искать общий знаменатель, который выглядит как произведение знаменателей с добавлением дополниетльных множителей к числителям.
Вычислить значения дробей: 1 ) x 3 + 1 x 7 + 2 · 2 , 2 ) x + 1 x · ln 2 ( x + 1 ) · ( 2 x — 4 ) — sin x x 5 · ln ( x + 1 ) · ( 2 x — 4 ) , 3 ) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x
Решение
- Никаких сложных вычислений знаменатель не требует, поэтому нужно выбрать их произведение вида 3 · x 7 + 2 · 2 , тогда к первой дроби x 7 + 2 · 2 выбирают как дополнительный множитель, а 3 ко второй. При перемножении получаем дробь вида x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 3 · x 7 + 2 · 2 + 3 · 1 3 · x 7 + 2 · 2 = = x · x 7 + 2 · 2 + 3 3 · x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2
- Видно, что знаменатели представлены в виде произведения, что означает ненужность дополнительных преобразований. Общим знаменателем будет считаться произведение вида x 5 · ln 2 x + 1 · 2 x — 4 . Отсюда x 4 является дополнительным множителем к первой дроби, а ln ( x + 1 ) ко второй. После чего производим вычитание и получаем, что:
x + 1 x · ln 2 ( x + 1 ) · 2 x — 4 — sin x x 5 · ln ( x + 1 ) · 2 x — 4 = = x + 1 · x 4 x 5 · ln 2 ( x + 1 ) · 2 x — 4 — sin x · ln x + 1 x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) = = x + 1 · x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) = x · x 4 + x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) - Данный пример имеет смысл при работе со знаменателями дробями. Необходимо применить формулы разности квадратов и квадрат суммы, так как именно они дадут возможность перейти к выражению вида 1 cos x — x · cos x + x + 1 ( cos x + x ) 2 . Видно, что дроби приводятся к общему знаменателю. Получаем, что cos x — x · cos x + x 2 .
После чего получаем, что
1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = = 1 cos x — x · cos x + x + 1 cos x + x 2 = = cos x + x cos x — x · cos x + x 2 + cos x — x cos x — x · cos x + x 2 = = cos x + x + cos x — x cos x — x · cos x + x 2 = 2 · cos x cos x — x · cos x + x 2
Ответ:
1 ) x 3 + 1 x 7 + 2 · 2 = x · x 7 + 2 · 2 · x + 3 3 · x 7 + 2 · 2 , 2 ) x + 1 x · ln 2 ( x + 1 ) · 2 x — 4 — sin x x 5 · ln ( x + 1 ) · 2 x — 4 = = x · x 4 + x 4 — sin x · ln ( x + 1 ) x 5 · ln 2 ( x + 1 ) · ( 2 x — 4 ) , 3 ) 1 cos 2 x — x + 1 cos 2 x + 2 · cos x · x + x = 2 · cos x cos x — x · cos x + x 2 .
Примеры умножения дробей с переменными
При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.
Произвести умножение дробей x + 2 · x x 2 · ln x 2 · ln x + 1 и 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x .
Решение
Необходимо выполнить умножение. Получаем, что
x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) = = x — 2 · x · 3 · x 2 1 3 · x + 1 — 2 x 2 · ln x 2 · ln x + 1 · sin ( 2 · x — x )
Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x 2 , тогда получим выражение вида
3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin ( 2 · x — x )
Ответ: x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) = 3 · x — 2 · x · x 1 3 · x + 1 — 2 ln x 2 · ln x + 1 · sin ( 2 · x — x ) .
Деление
Деление у дробей аналогично умножению, так как первую дробь умножают на вторую обратную. Если взять к примеру дробь x + 2 · x x 2 · ln x 2 · ln x + 1 и разделить на 3 · x 2 1 3 · x + 1 — 2 sin 2 · x — x , тогда это можно записать таким образом, как
x + 2 · x x 2 · ln x 2 · ln x + 1 : 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x ) , после чего заменить произведением вида x + 2 · x x 2 · ln x 2 · ln x + 1 · 3 · x 2 1 3 · x + 1 — 2 sin ( 2 · x — x )
Возведение в степень
Перейдем к рассмотрению действия с дробями общего вида с возведением в степень. Если имеется степень с натуральным показателем, тогда действие рассматривают как умножение одинаковых дробей. Но рекомендовано использовать общий подход, базирующийся на свойствах степеней. Любые выражения А и С , где С тождественно не равняется нулю, а любое действительное r на ОДЗ для выражения вида A C r справедливо равенство A C r = A r C r . Результат – дробь, возведенная в степень. Для примера рассмотрим:
x 0 , 7 — π · ln 3 x — 2 — 5 x + 1 2 , 5 = = x 0 , 7 — π · ln 3 x — 2 — 5 2 , 5 x + 1 2 , 5
Порядок выполнения действий с дробями
Действия над дробями выполняются по определенным правилам. На практике замечаем, что выражение может содержать несколько дробей или дробных выражений. Тогда необходимо все действия выполнять в строгом порядке: возводить в степень, умножать, делить, после чего складывать и вычитать. При наличии скобок первое действие выполняется именно в них.
Вычислить 1 — x cos x — 1 c o s x · 1 + 1 x .
Решение
Так как имеем одинаковый знаменатель, то 1 — x cos x и 1 c o s x , но производить вычитания по правилу нельзя, сначала выполняются действия в скобках, после чего умножение, а потом сложение. Тогда при вычислении получаем, что
1 + 1 x = 1 1 + 1 x = x x + 1 x = x + 1 x
При подстановке выражения в исходное получаем, что 1 — x cos x — 1 cos x · x + 1 x . При умножении дробей имеем: 1 cos x · x + 1 x = x + 1 cos x · x . Произведя все подстановки, получим 1 — x cos x — x + 1 cos x · x . Теперь необходимо работать с дробями, которые имеют разные знаменатели. Получим:
x · 1 — x cos x · x — x + 1 cos x · x = x · 1 — x — 1 + x cos x · x = = x — x — x — 1 cos x · x = — x + 1 cos x · x
Ответ: 1 — x cos x — 1 c o s x · 1 + 1 x = — x + 1 cos x · x .
Источник