- Решите задачу двумя способами : арифметическим и алгебраическим?
- Помогите решить двумя способами арифметическим и алгебраическим?
- Сумма двух чисел равна 37 а их разноость 11?
- Решить задачу арифметическим и алгебраическим способами, решение арифметическим способом дополните пояснением, какие действия над величинами были выполнены : Вертолет пролетел расстояние между двумя г?
- Решите задачу двумя способами арифметическим и алгебраическим?
- Реши задачу двумя способами арифметическим и алгебройческим?
- Решите пожалуйста задачу в 2 способа : 1) арифметический, 2) Алгебраический?
- Сумма двух чисел равна 790, а их разность равна 200?
- В книге ненапечатаны рассказ и повесть, которые занимают 70 страниц?
- Помогите решить задачу номер 427 арифметическим способом?
- Помогите , пожалуйста?
- Текстовые задачи и их решение арифметическим способом
- Решение:
- Решение:
- Решение:
- Решение
- Решение задач разными способами: способы решения задач в начальной школе, решение задач 2 способами 2 класс
- Способы решения задач в начальной школе
- графический способ решения задач: чертёж
- Петерсон решение задач
- Решение задач несколькими способами
- графический способ решения задачи
- арифметический способ решения задачи
- Решение задач разными способами: 2 класс
Решите задачу двумя способами : арифметическим и алгебраическим?
Математика | 5 — 9 классы
Решите задачу двумя способами : арифметическим и алгебраическим.
Я не вникаю, как арифметическим?
Могу предположить, что алгебраическим = через уравнение.
Арифметическим через таблицу или пошаговые решения или примеры.
Помогите решить двумя способами арифметическим и алгебраическим?
Помогите решить двумя способами арифметическим и алгебраическим.
Сумма двух чисел равна 37 а их разноость 11?
Сумма двух чисел равна 37 а их разноость 11.
Найдите числа ДВУМЯ СПОСОБАМИ!
АЛГЕБРАИЧЕСКИЙ И АРИФМЕТИЧЕСКИЙ!
Решить задачу арифметическим и алгебраическим способами, решение арифметическим способом дополните пояснением, какие действия над величинами были выполнены : Вертолет пролетел расстояние между двумя г?
Решить задачу арифметическим и алгебраическим способами, решение арифметическим способом дополните пояснением, какие действия над величинами были выполнены : Вертолет пролетел расстояние между двумя городами при попутном ветре за 23_4дробь часа, а привстречном за 3часа.
Определите скорость ветра, если собственная скорость ветра 230км / ч.
Решите задачу двумя способами арифметическим и алгебраическим?
Решите задачу двумя способами арифметическим и алгебраическим.
В двух папках лежит 573 рукописных листа, причём в одной из папок, более толстой, на 173 листов больше, чем в другой.
Сколько листов лежит в более толстой папке?
Реши задачу двумя способами арифметическим и алгебройческим?
Реши задачу двумя способами арифметическим и алгебройческим.
Один из углов треугольника в два раза меньше другого и на 28 градусов меньше третьего.
Найдите все углы треугольника.
Решите пожалуйста задачу в 2 способа : 1) арифметический, 2) Алгебраический?
Решите пожалуйста задачу в 2 способа : 1) арифметический, 2) Алгебраический.
В классе 30 учащихся девочек больше чем мальчиков на 8.
Сколько девочек и сколько мальчиков в классе?
Сумма двух чисел равна 790, а их разность равна 200?
Сумма двух чисел равна 790, а их разность равна 200.
Найдите оба числа.
Постарайтесь решить эту задачу двумя способами : арифметическим и алгебраическим.
В книге ненапечатаны рассказ и повесть, которые занимают 70 страниц?
В книге ненапечатаны рассказ и повесть, которые занимают 70 страниц.
Повесть занимает в 4 раза больше страниц, чем рассказ.
Сколько страниц занимает рассказ, а сколько повесть.
Решить двумя способами(арифметическим и алгебраическим ).
Помогите решить задачу номер 427 арифметическим способом?
Помогите решить задачу номер 427 арифметическим способом.
Помогите , пожалуйста?
Арифметическим или алгебраическим способом .
На этой странице находится вопрос Решите задачу двумя способами : арифметическим и алгебраическим?. Здесь же – ответы на него, и похожие вопросы в категории Математика, которые можно найти с помощью простой в использовании поисковой системы. Уровень сложности вопроса соответствует уровню подготовки учащихся 5 — 9 классов. В комментариях, оставленных ниже, ознакомьтесь с вариантами ответов посетителей страницы. С ними можно обсудить тему вопроса в режиме on-line. Если ни один из предложенных ответов не устраивает, сформулируйте новый вопрос в поисковой строке, расположенной вверху, и нажмите кнопку.
= — 0, 96b + 3 — 2, 9b + 8 — 16 + 6b = ( — 0, 96b — 2, 9b + 6b) + (3 + 8 — 16) = 2, 14b — 5 приb = — 9 / 13 2, 14 * ( — 9 / 13) — 5 = 214 / 100 * ( — 9 / 13) — 5 = — 1 313 / 650 — 5 = — 6 313 / 650 Пояснение : 214 / 100 * ( — 9 / 13) = — 1926 / 1300 ..
S = π * r² площадь круга S = 3, 14 * 5² = 3, 14 * 25 = 78, 5см² площадь круга 10 * 10 = 100см² площадь квадрата 100 — 78, 5 = 21, 5см² площадь закрашенной части квадрата.
S = 1 × a×h — 2 Нужно просто сосчитать клетки . S = 1×4×10 = 20 см в квадрате — 2.
Икс — 17 = 36 Икс = 36 + 17 Икс = 53.
X — 17 = 36 x = 36 + 17 x = 53 Ответ : 53.
R = 3 (радиус) l = 4 (образующая) Площадь боковой поверхности конуса находится по формуле : S = pi * R * l = 12 * pi.
Решений систем уравнений с помощью матриц. 1)Методом Гаусса 2)Метод Крамера 3)Методом обратной матрицы.
Сложение и умножение : 56 + 78 ; 8 * 7 ; 76 + 6.
18 / 90 = 2 / 10 = 1 / 5 Или 18 / 90 = 9 / 45 = 1 / 5.
Источник
Текстовые задачи и их решение арифметическим способом
Решить задачу арифметическим способом — это значит найти ответ на требование задачи посредством выполнения арифметических действий над данными в задаче числами.
Текстовые задачи — это
- задачи на движение;
- задачи на применение действий сложения и вычитания натуральных чисел;
- задачи, приводящие к делению, умножению натуральных чисел;
- задачи на отработку отношений «на какое-то число больше», «на какое-то число меньше», «в какое-то число раз больше», «в какое-то число раз меньше», «всего»;
- задачи на части;
- задачи на совместную работу;
- задачи на предполагаемое и фактически выполненное;
- задачи с использованием рисунков, диаграмм.
Выполняя решение задачи, нужно провести анализ текста задачи и последовательно ответить на вопросы:
- какие величины надо знать, чтобы ответить на вопрос задачи?
- Какая из величин известна, а какая нет?
- Что нужно знать, чтобы найти эту величину?
- Как это узнать, исходя из условия задачи?
Задача #1. Два велосипедиста выехали одновременно навстречу друг другу с одинаковой скоростью. Через какое время они встретятся, если расстояние между ними — 72 км, а скорость — 12 км/ч?»
Решение:
1. Cкорость сближения велосипедистов: 12 + 12 = 24 км/ч.
2. Время через которое велосипедисты встретятся: 72 : 24 = 3 ч.
Ответ: велосипедисты встретятся через 3 часа.
Задача #2. В первый день продали 25 кг яблок, во второй — 40 кг, а в третий день продали 55 кг яблок. Сколько всего яблок продали за три дня?
Решение:
25 + 40 + 55 = 120 кг.
Ответ: всего яблок продали за три дня 120 кг.
Задача #3. В одном куске — 150 м проволоки, а в другом — на 35 м меньше. Сколько метров проволоки в двух кусках вместе?
Решение:
1. во втором куске проволки: 150 − 35 = 115 м.
2. Проволоки в двух кусках вместе: 150 + 115 = 265 м.
Ответ: проволоки в двух кусках вместе — 265 м.
Задача #4. В фермерском хозяйстве 2 га заняты усадьбой и постройками, под посевами — 379 га, под сенокосом — 319 га, под лесом — 40 га и под выгоном — 120 га. Сколько всего земли в пользовании у фермера?
Решение
2 + 379 + 319 + 40 + 120 = 860 га.
Ответ: в пользовании у фермера всего 860 га земли.
Задача #5. Часы спешат на 12 мин. и 34 с. и показывают 8 ч. 23 мин. 13 с. Запиши правильное время.
Для определения правильного времени нужно отнять время, на которое спешат часы, от показываемого на часах времени.
Получим:
8 ч. 23мин. 13с. − 12мин. 34с. = 8ч. 22мин. 73с. − 12мин. 34с. = 8ч. 10мин. 39с.
Ответ: правильное время: 8 ч. 10 мин. 39 с.
1. скорость моторной лодки по течению реки: 48 : 2 = 24 км/ч.
2. скорость течения реки, или скорость плота: 48 : 24 = 2 км/ч.
3. Собственная скорость лодки: 24 − 2 = 22 км/ч.
4. Скорость моторной лодки при движении против течения реки: 22 − 2 = 20 км/ч.
Ответ: скорость моторной лодки при движении против течения реки равна 20 км/ч.
Задача #7. В магазине имеется два бочонка сельди одного сорта. Стоимость сельди в одном бочонке равна 1820 р., а во втором — 2345 р., причём во втором бочонке сельди на 15 кг больше, чем в первом. Определи массу сельди в каждом бочонке.
1. стоимость сельди во втором бочонке больше по сравнению с первым на: 2345 − 1820 = 525 руб.
2. Один килограмм сельди стоит: 525 : 15 = 35 руб.
3. Масса сельди в первом бочонке: 1820 : 35 = 52 кг.
4. Масса сельди во втором бочонке: 2345 : 35 = 67 кг.
Ответ: масса сельди в первом бочонке равна 52 кг, а масса сельди во втором бочонке равна 67 кг.
1. Какова прибыль магазина от продажи лыж за первую неделю?
2. Какова прибыль магазина от продажи лыж за вторую неделю?
3. Как изменилась прибыль магазина за вторую неделю по сравнению с первой неделей?
1. на какую сумму были проданы лыжи за первую неделю?
4722⋅18 = 84996 руб.
2. Какую сумму заплатили за это количество пар лыж при закупке товара?
3710⋅18 = 66780 руб.
3. Какова прибыль магазина за первую неделю от продажи лыж?
84996−66780 = 18216 руб.
4. Какова новая цена одной пары лыж?
4722−350 = 4372 руб.
5. Сколько пар лыж продали на второй неделе?
18+13 = 31 п.
6. На какую сумму было продано это количество пар лыж за вторую неделю?
4372⋅31 = 135532 руб.
7. Какую сумму заплатили за это количество пар лыж при закупке товара?
3710⋅31 = 115010 руб.
8. Какова прибыль магазина за вторую неделю от продажи лыж?
135532−115010 = 20522 руб.
9. Как изменилась прибыль магазина за вторую неделю по сравнению с первой неделей?
Она стала больше на 20522−18216 = 2306 руб.
Ответ:
1. Прибыль магазина за первую неделю — 18216 р.
2. Прибыль магазина за вторую неделю — 20522 р.
3. Прибыль магазина за вторую неделю по сравнению с первой неделей увеличилась.
Задача #9. Из пунктов A и B, расстояние между которыми 696 км, одновременно навстречу друг другу выехали автомобилист и мотоциклист. Скорость автомобиля равна 98 км/ч, а скорость мотоцикла равна 76 км/ч. Узнай, через какое время после начала движения автомобилист и мотоциклист могут встретиться?
2. Через какое время после начала движения автомобилист и мотоциклист могут встретиться?
696 км:174 км/ч=4 ч.
Правильный ответ: автомобилист и мотоциклист могут встретиться через 4 часа после начала движения.
Задача #10. Летом Наташа отдыхала на даче и помогала родителям ухаживать за участком. В подарок своей подруге она привезла в город варенье. Клубничного варенья было 750 г, вишнёвого — в 2 раза больше, а варенья из сливы — на 350 г больше, чем клубничного. Найди массу варенья, которое Наташа привезла в подарок.
2. Какова масса варенья из сливы?
750+350 = 1100 г.
3. Какова масса варенья, которое Наташа привезла в подарок?
750+1500+1100 = 3350 г.
Правильный ответ: масса варенья, которое Наташа привезла в подарок — 3350 г.
Задача #11. Двигаясь против течения реки, теплоход за 3 ч. прошёл расстояние в 69 км. Вычисли скорость течения реки, если собственная скорость теплохода — 28 км/ч.
1. какова скорость теплохода против течения реки?
69:3=23 км/ч.
2. Какова скорость течения реки?
28−23=5 км/ч.
Правильный ответ: скорость течения реки равна 5 км/ч.
Задача #12. Работая один, насос может откачать 1512 л воды за 72 ч., а работая вместе с другим насосом — за 18 ч.
За какое время может откачать это количество воды второй насос?
2. Сколько литров воды могут откачать два насоса, работая совместно, за один час?
1512:18=84 л.
3. Сколько литров воды может откачать второй насос, работая один, за один час?
84−21 = 63 л.
4. За какое время может откачать это количество воды второй насос?
1512:63=24 ч.
Правильный ответ: второй насос может откачать это количество воды за 24 ч.
Источник
Решение задач разными способами: способы решения задач в начальной школе, решение задач 2 способами 2 класс
Школьникам проще справиться с примерами на умножение или деление, чем найти ответ в задаче, требующей определенных математических навыков. Учебники по математике для второклассников включают ряд текстовых задач, которые решаются разными способами. Такие задания развивают у детей навыки логического и абстрактного мышления, а также помогают укрепить их способности в решении задач.
Перед вами способы, которые помогут с легкостью решить любую математическую задачу.
Способы решения задач в начальной школе
Школьники часто теряются, когда сталкиваются с решением текстовых задач. Им нужно научиться анализировать информацию и находить полезные инструменты для выполнения заданий.
Особенность текстовых задач в том, что в них прямо не указывается, какое именно действие (или действия) нужно выполнить для нахождения ответа.
Различают несколько способов решения задач – алгебраический, арифметический и графический.
- Первый способ подразумевает ряд арифметических действий над числами.
- Алгебраический — нахождение ответа через х, т.е. решение через уравнение.
- В результате применения графического метода искомые значения величин находятся с помощью геометрических образов: отрезков прямой, прямоугольников, квадратов и т.д.
графический способ решения задач: чертёж
Не существует наиболее рационального способа решения, т.к. все варианты в итоге имеют одинаковый ответ.
Петерсон решение задач
Решение задач несколькими способами
На дереве сидело 7 голубей и 5 ласточек. 4 птицы улетели. Сколько птиц осталось?
графический способ решения задачи
графический
В первом ряду изображены голуби, в нижнем — ласточки. Если 4 голубя улетели (их зачеркнули), осталось всего 8 символов.
Ответ: 8 птиц осталось сидеть на дереве.
арифметический способ решения задачи
арифметический
Если улетели ласточки, узнаем, сколько птиц осталось.
5-4 = 1 (ласт.)
К голубям добавим 1 ласточку.
7 + 1 = 8 (пт.)
арифметический 2-й вариант
Если дерево покинули голуби, узнаем, сколько птиц осталось сидеть.
7-4 = 3 (гол.) — осталось
Сложим оставшееся количество голубей и ласточек.
3 + 5 = 8 (пт.)
Ответ: 8 птиц осталось сидеть на дереве.
Решение задач разными способами: 2 класс
Задача 1
В автобусе ехало 16 пассажиров. 5 пассажиров вышло на первой остановке, на второй салон покинуло еще 3 человека. Сколько пассажиров осталось в автобусе?
1 вариант решения арифметический
- Узнаем общее количество вышедших пассажиров.
- Сколько пассажиров осталось в автобусе?
5 + 3 = 8 (п.) — всего пассажиров вышло на остановках
16 — 8 = 8 (п.) — пассажиров осталось в автобусе
Ответ: 8 пассажиров осталось в автобусе
2 вариант графический
Зеленым цветом помечено количество вышедших пассажиров, красным — количество оставшихся. Подсчитаем деления на красном конце и получим 8 человек.
Ответ: 8 пассажиров осталось в автобусе
Важно! Решение задачи несколькими способами является проверкой правильности. Одинаковые ответы указывают на правильность решения.
Задача 2
Маляру нужно покрасить 15 окон. К обеду он покрасил 5 окон, после обеда — 3. Сколько окон осталось ему покрасить?
1 вариант решения арифметический
- Узнаем общее количество окрашенных окон.
- Узнаем количество неокрашенных окон.
5 + 3 = 8 (ок.) — всего окон покрасил маляр
15-8 = 7 (ок.) — окон осталось покрасить
Ответ: маляру осталось покрасить 7 окон
2 вариант решения арифметический
- Сколько окон нужно было покрасить после обеда?
- Сколько окон осталось покрасить ?
15-5 = 10 (ок.) — окон нужно было покрасить после обеда
10-3 = 7 (ок.) — окон осталось покрасить
Ответ: маляру осталось покрасить 7 окон
Задача 3
Маша купила в магазине несколько ручек. 4 штуки она подарила подруге, после чего у нее осталось 8 ручек. Сколько ручек купила Маша?
1 вариант решения алгебраический
Пускай Маша купила х ручек, 4 она подарила и 8 штук осталось. Имеем уравнение
Х — 4 = 8
Х =8+4
Х =12 (р.) купила всего
Ответ: Маша купила 12 ручек
2 вариант решения арифметический
Общее количество ручек находим из сложения подаренных и оставшихся ручек.
8+4 = 12 (шт.)
Ответ: Маша купила 12 ручек
Задача 4
В веревочном парке Максим до обеда преодолел 6 воздушных троп. А после отдыха он поднялся на 3 столба и одолел 5 подвесных мостов. Сколько всего препятствий покорил Максим?
1 вариант арифметический
Найдем общее количество преград, преодоленных Максимом после обеда.
3 + 5 = 8 (п.) — преодолел;
Сложим преодоленные преграды до отдыха и после отдыха.
6 + 8 = 14 (п.) — всего.
Ответ: Максим преодолел 14 преград
2 вариант арифметический
Найдем количество преград после восхождения мальчика на столбы.
6+3 = 9 (п.)
Всего, после того как преодолел подвесные мосты.
9+5=14 (п.)
Ответ: Максим преодолел 14 преград
Задача 5
У Ирины было 20 красных и 40 синих бусин. Она использовала 30 бусин. Сколько бусин осталось у девочки?
1 вариант арифметический
- Сколько всего было бусин у девочки?
- Сколько бусин осталось?
20 + 40 = 60 (в.) — всего бусин было у девочки
60-30 = 30 (б.) — бусин осталось у девочки
Ответ: у Ирины осталось 30 бусин
2 вариант решения арифметический
Поскольку в задаче не указано, какого цвета бусины использовала девочка, предположим, что девочка использовала синие бусины, тогда
- Сколько синих бусин осталось у девочки?
- Сколько бусин осталось у девочки?
40-30 = 10 (б.) — синих бусин осталось у девочки
20 + 10 = 30 (б.) — бусин осталось у девочки
Ответ: у девочки осталось 30 бусин
Текстовые математические задачи непростые, но, вникая в их суть и регулярно практикуясь, школьник постепенно укрепляет свои навыки. А поверить правильность ответа можно с помощью разных способов решения.
Источник