Решить задачу арифметически несколькими способами
Письмо с инструкцией по восстановлению пароля
будет отправлено на вашу почту
- Главная
- 9-Класс
- Алгебра
- Видеоурок «Арифметический способ решения текстовых задач»
Существует несколько способов решения текстовых задач:
· арифметический способ – это способ решения текстовой задачи с помощью чисели знаков арифметических действий сложения, вычитания, умножения и деления, то есть с помощью нескольких действий над числами, связанных между собой;
· алгебраический способ – это способ решения текстовой задачи с помощьювведения переменных и составления соответствующего уравнения или неравенства, или системы уравнений или неравенств;
· геометрический способ – это способ решения текстовой задачи с помощью применения геометрических знаний;
· схематический способ – это способ решения текстовой задачи с помощью схем;
· графический способ – это способ решения текстовой задачи с помощью графиков в прямоугольной системе координат.
Каждый из этих способов предполагает перевод условий задачи на язык математики. Это действие математики называют математическим моделированием. Результат этого действия называют математической моделью. При применении различных способов решения получаются различные математические модели. В арифметическом способе математической моделью является числовое выражение, то есть числовой пример с несколькими действиями, а конечный результат вычислений будет решением задачи. В алгебраическом способе математической моделью чаще всего является уравнение, а решение уравнения даёт решение задачи. В геометрическом способе математической моделью может выступать геометрическая фигура, а решение задачи – например, один из найденных элементов этой фигуры. В схематическом способе математической моделью является схема, с помощью которой находят решение задачи. В графическом способе математической моделью является график, построенный по условию задачи. При этом способе решением задачи могут быть координаты определённых точек графиков.
В этом уроке более подробно рассмотрим арифметический способ решения задачи.
Решить задачу арифметическим способом – это значит найти ответ на главный вопрос задачи посредством выполнения арифметических действий над числовыми данными из условия задачи. Одну и ту же задачу можно решить различными арифметическими способами. Они отличаются друг от друга количеством действий и последовательностью выполнения этих действий в процессе решения задачи.
Например. Рассмотрим следующую задачу. Три друга Саша, Коля и Витя собирали в лесу грибы. Коля собрал в 2 раза меньше грибов, чем Саша, Витя – на 6 грибов больше, чем Коля. Сколько грибов собрали три друга вместе, если Саша собрал 22 гриба?
Помогает определить правильный ход логических рассуждений краткая запись условий задачи в форме таблицы.
Решим эту задачу по действиям или так называемым способом решения задач по вопросам. Для начала ответим на первый вопрос «Сколько грибов собрал Коля?».
По условию задачи «Коля собрал в 2 раза меньше грибов, чем Саша», значит, чтобы ответить на вопрос, надо 22 разделить на 2. В результате получилось, что Коля собрал 11 грибов. (22:2=11(грибов) – собрал Коля).
Следующим действием ответим на второй вопрос задачи «Сколько грибов собрал Витя?». По условию задачи «Витя собрал на 6 грибов больше, чем Коля», значит, для ответа на вопрос надо к 11-ти прибавить 6. В результате получилось, что Витя собрал 17 грибов.
22+22:2+(22:2+6)=50 грибов собрали три друга вместе.
Умение решать задачи арифметическим способом с помощью числовых выражений говорит о более высоком уровне математической подготовки по сравнению с умением решать текстовые задачи по действиям.
Источник
Решение текстовых задач арифметическим способом
Разделы: Математика
Обучение решению текстовых задач играет важную роль в формировании математических знаний. Текстовые задачи дают большой простор для развития мышления учащихся. Обучение решению задач – это не только обучение технике получения правильных ответов в некоторых типичных ситуациях, сколько обучение творческому подходу к поиску решения, накопление опыта мыслительной деятельности и демонстрация учащимися возможностей математики в решении разнообразных задач. Однако при решении текстовых задач в 5-6 классах чаще всего используется уравнение. Но мышление пятиклассников еще не готово к формальным процедурам, выполняемым при решении уравнений. Арифметический способ решения задач имеют ряд преимуществ по сравнению с алгебраическим потому, что результат каждого шага по действиям нагляднее и конкретнее, не выходит за рамки опыта пятиклассников. Школьники лучше и быстрее решают задачи по действиям, чем с помощью уравнений. Детское мышление конкретно, и развивать его надо на конкретных предметах и величинах, затем постепенно переходить к оперированию абстрактными образами.
Работа над задачей предусматривает внимательное прочтение текста условия, вникания в смысл каждого слова. Приведу примеры задач, которые легко и просто можно решить арифметическим способом.
Задача 1. Для приготовления варенья на две части малины берут три части сахара. Сколько килограммов сахара нужно взять на 2 кг 600 г малины?
При решении задачи на “части” надо приучить наглядно представлять условие задачи, т.е. лучше опираться на рисунок.
- 2600:2=1300 (г) — приходится на одну часть варенья;
- 1300*3= 3900 (г) — сахара нужно взять.
Задача 2. На первой полке стояло в 3 раза больше книг, чем на второй. На двух полках вместе стояло 120 книг. Сколько книг стояло на каждой полке?
1) 1+3=4 (части) — приходится на все книги;
2) 120:4=30 (книг) — приходится на одну часть ( книги на второй полке);
3) 30*3=90 (книг)- стояло на первой полке.
Задача 3. В клетке сидят фазаны и кролики. Всего в ней 27 голов и 74 ноги. Узнать число фазанов и число кроликов в клетке.
Представим, что на крышку клетки, в которой сидят фазаны и кролики, мы положили морковку. Тогда все кролики встанут на задние лапки, чтобы дотянуться до нее. Тогда:
- 27*2=54 (ноги) — будут стоять на полу;
- 74-54=20 (ног) — будут наверху;
- 20:2=10 (кроликов);
- 27-10=17 (фазанов).
Задача 4. В нашем классе 30 учащихся. На экскурсию в музей ходили 23 человека, а в кино – 21, а 5 человек не ходили ни на экскурсию, ни в кино. Сколько человек ходили и на экскурсию, и в кино?
Для анализа условия и выбора плана решения можно использовать “круги Эйлера”.
- 30-5=25 (человек) – ходили или в кино, или на экскурсию,
- 25-23=2 (человек) – ходили только в кино;
- 21-2=19 ( человек) – ходили и в кино, и на экскурсию.
Задача 5. Три утенка и четыре гусенка весят 2 кг 500 г, а четыре утенка и три гусенка весят 2кг 400г. Сколько весит один гусенок?
- 2500+2400=2900 (г) – весят семь утят и семь гусят;
- 4900:7=700 (г) – вес одного утенка и одного гусенка;
- 700*3=2100 (г) – вес 3 утят и 3 гусят;
- 2500-2100=400 (г) – вес гусенка.
Задача 6. Для детского сада купили 20 пирамид: больших и маленьких – по 7 и по 5 колец. У всех пирамид 128 колец. Сколько было больших пирамид?
Представим, что со всех больших пирамид мы сняли по два кольца. Тогда:
1) 20*5=100 (колец) – осталось;
2) 128-100-28 (колец) – мы сняли;
3) 28:2=14 (больших пирамид).
Задача 7. Арбуз массой 20кг содержал 99% воды. Когда он немного усох, содержание воды в нем уменьшилось до 98%. Определите массу арбуза.
Для удобства решение будет сопровождаться иллюстрацией прямоугольников.
99% вода | 1% сухое вещество |
98% вода | 2% сухое вещество |
При этом желательно рисовать прямоугольники “сухого вещества” равными, потому что масса “сухого вещества” в арбузе остается неизменной.
1) 20:100=0,2 (кг) – масса “сухого вещества”;
2) 0,2:2=0,1 (кг) – приходится на 1% усохшего арбуза;
3) 0,1*100=10 (кг) – масса арбуза.
Задача 8. Гости спросили: сколько лет исполнилось каждой из трех сестер? Вера ответила, что ей и Наде вместе 28 лет, Наде и Любе вместе 23 года, а всем троим 38 лет. Сколько лет каждой из сестер?
- 38-28=10 (лет) – Любе;
- 23-10=13 (лет) – Наде;
- 28-13=15 (лет) – Вере.
Арифметический способ решения текстовых задач учит ребенка действовать осознанно, логически правильно, потому что при решении таким способом усиливается внимание к вопросу “почему” и имеется большой развивающий потенциал. Это способствует развитию учащихся, формированию у них интереса к решению задач и к самой науке математике.
Чтобы сделать обучение посильным, увлекательным и поучительным, надо очень внимательно отнестись к выбору текстовых задач, рассматривать различные способы их решения, выбирая оптимальные из них, развивать логическое мышление, что в дальнейшем необходимо при решении геометрических задач.
Научиться решать задачи школьники смогут, лишь решая их. “Если вы хотите научиться плавать, то смело входите в воду, а, если хотите научиться решать задачи, то решайте их”,- пишет Д.Пойа в книге “ Математическое открытие”.
Источник
Решение текстовых задач арифметическим способом
Арифметический способ решения текстовых задач
«…пока мы стараемся увязывать обучение математике с жизнью, нам будет трудно обойтись без текстовых задач – традиционного для отечественной методики средства обучения математике».
Умение решать текстовые задачи – один из основных показателей математического развития учащихся, глубины усвоения ими учебного материала, четкости в рассуждениях, понимания логических аспектов различных вопросов.
Текстовые задачи для большинства школьников – трудный, а поэтому нелюбимый учебный материал. Однако, в школьном курсе математики ему придается большое значение, так как задачи способствуют развитию прежде всего логического мышления, пространственного воображения, практического применения математических знаний в деятельности человека.
В процессе решения задач учащиеся получают опыт работы с величинами, постигают взаимосвязи между ними, получают опыт применения математики в решении реальных жизненных задач. Решение текстовых задач развивает логическую культуру, вызывая интерес сначала к процессу поиска решения задачи, а потом и к изучаемому предмету.
Традиционная российская школа всегда уделяла особое внимание обучению детей решению текстовых задач. Исторически сложилось так, что достаточно долгое время математические знания из поколения в поколение передавались в виде текстовых задач с решениями. Значимость их заключалась еще в прикладном значении, так как по своему содержанию это были задачи практической направленности (расчеты банковские, торговые, земельные и др.). Образованным в России считался тот, кто умел решать эти типовые задачи, очень важные в повседневной жизни.
Необходимо отметить, что бучение решению практических задач давалось нелегко. Часто наблюдалось заучивание наизусть способа решения без осознанного понимания условия. Главное – определить тип задачи и найти правило для ее решения, понимание было не важно.
К середине XX века была разработана хорошая методика обучению решению задач. Но, к сожалению, часто наблюдалось со стороны преподавателей натаскивание учащихся на решение типовых задач, запоминание стандартных приемов. Но невозможно научиться решать задачи по заученной схеме.
В конце 60-х годов реформа школьного математического образования предполагала раннее введение уравнений с целью по-новому организовать обучение решению задач. Однако, роль алгебраического способа решения текстовых задач в 5-6 классах была преувеличена именно потому, что из школьной программы были удалены арифметические способы. И практика доказала, что без достаточной подготовки мышления учащихся решать задачи с помощью уравнений нецелесообразно. Ученик должен уметь рассуждать, представлять действия, которые происходят с предметами.
В 5-6 классах арифметическому способу решения текстовых задач необходимо уделять достаточно внимания и не торопиться переходить к алгебраическому способу – решению задач с помощью уравнения. Как только ученик научился алгебраическому способу, его практически невозможно вернуть к «решению по действиям». Составив уравнение, главное – правильно его решить, не допустить вычислительной ошибки. И совсем не нужно задумываться над тем, какие производятся арифметические действия по ходу решения, к чему они приводят. А если проследить по шагам решение уравнения, мы увидим те же действия, что в арифметическом способе. Только над этим вряд ли задумывается ученик.
Очень часто мы наблюдаем, что ребенок не готов к решению задачи алгебраическим способом, когда вводим абстрактную переменную и появляется фраза «пусть икс…». Откуда взялся этот «икс», какие слова надо рядом с ним написать – на данном этапе ученику непонятно. И происходит это потому, что необходимо учитывать возрастные особенности детей, у которых на этот момент развито наглядно-образное мышление. Абстрактные модели им пока не под силу
Что же мы понимаем под требованием – решить задачу. Это значит найти такую последовательность действий, которая в результате анализа условия приведет к ответу на поставленный в задаче вопрос. Чтобы прийти к ответу, нужно проделать серьезный путь, начиная с момента понимания текста, уметь выделять главное, «перевести» задачу на язык математики, заменяя слова «скорее», «медленнее» на «меньше» или «больше», составлять графическую модель или таблицу, облегчающие понимание условия задачи, сопоставлять величины, устанавливая логические отношения между данными по условию и искомыми. И дается это детям очень нелегко.
Важно отметить, что текст задач должен составляться таким образом, чтобы ребенок понимал и представлял, о чем идет речь. Зачастую, прежде чем приступить к решению задачи, затрачивается много времени на разбор условия, когда учащимся приходится объяснять, что такое чугунная болванка, чем она отличается от детали, а также железобетонная опора, станок-автомат, жилая площадь и т.д. Текст задачи должен соответствовать уровню его восприятия. Конечно же, текст задачи необходимо приблизить к реальной жизни, чтобы можно было увидеть практическое применение данной модели.
Приступая к решению задачи необходимо не только представить ситуацию, о которой идет речь, но и изобразить ее на рисунке , схеме, в виде таблицы. Невозможно качественно решить задачу без составления краткой записи условия. Именно схематичное составление условия позволяет при обсуждении решения выявить все действия, которые необходимо выполнить, чтобы ответить на вопрос задачи.
Рассмотрим некоторые примеры решения текстовых задач
Задачи на движение
Данный тип задач широко распространен в школьном курсе математики. В них рассматриваются разные виды движения: навстречу, в противоположных направлениях, в одном направлении (один догоняет другого).
Для понимания этих задач удобно изобразить схему. Но, если учащийся составляет таблицу, не нужно переубеждать его в том, что данный способ краткой записи условия не очень хорош. Мы по-разному воспринимаем информацию. Может, ребенок в таком отображении лучше «видит» задачу.
Пример 1. Два велосипедиста одновременно выехали навстречу друг другу из двух посёлков и встретились через 3 часа. Первый велосипедист ехал со скоростью 12 км/ч, а второй – 14 км/ч. На каком расстоянии находятся посёлки?
Составим схему к задаче, которая достаточно полно отражает условие (указаны направления движения, скорости велосипедистов, время в пути до встречи, ясен вопрос ):
Рассмотрим два способа решения этой задачи:
Традиционно мы любим решать эти задачи, вводя понятие «скорость сближения», и находим ее как сумму (или разность) скоростей участников движения. При движении навстречу друг другу – скорости складываем:
1)12 + 14 = 26 (км/ч) – скорость сближения
Зная, что время движения одинаково, второе действие позволяет по формуле пути ( S = vt ) рассчитать искомое расстояние и ответить на поставленный в задаче вопрос.
Но не все дети понимают, что это за абстрактная величина – скорость сближения. Почему можно складывать, а в других случаях вычитать скорости двух различных участников движения, объединяя их общим названием. Если ваши ученики решают эту задачу другим способом, не старайтесь их перетянуть на свою сторону. Для кого-то еще не настало время это понять, а кому-то первый способ вообще никогда не будет доступным.
1)12 • 3 = 36 (км) – путь первого велосипедиста до встречи
2)14 • 3 = 42 (км) – путь второго велосипедиста до встречи
3)36 + 42 = 78 (км) – расстояние между посёлками
12 • 3 + 14 • 3 = 78 (км)
Постепенно, когда ребенок научится понимать такие задачи, сравнивая числовые выражения, можно показать, что оба способа взаимосвязаны, а заодно вспомнить распределительное свойство умножения:
12 • 3 + 14 • 3 = 3(12 + 14) = 78
Пример 2. В двух пачках было 54 тетради. Когда из первой пачки убрали 10 тетрадей, а из второй — 14 тетрадей, то в обеих пачках стало тетрадей поровну. Сколько было тетрадей в каждой пачке первоначально?
Источник