Решить задачу 2 способами масса

Задачи на нахождение неизвестного по двум разностям

Рассмотрим задачи, в которых по двум разностям (одна из которых известна) находят неизвестное. Такие задачи имеют два варианта решения.

Задача 1. Купили 7 синих ручек и 4 красных ручки по одинаковой цене. За синие ручки заплатили на 138 рублей больше, чем за красные ручки. Сколько стоят синие ручки и сколько красные?

Данную задачу можно записать в виде таблицы:

Цена одной ручки Кол-во ручек Стоимость
Синие ? одинаковая 7 ? 138 р.
Красные ? 4 ?

Решение: По условию задачи нам известна одна разность стоимости синих и красных ручек — 138 рублей. Мы можем найти ещё одну разность – на сколько больше купили синих ручек, чем красных:

Теперь по этим двум разностям можно узнать цену одной ручки:

138 : 3 = 46 (р.) — цена одной ручки.

Теперь, зная цену одной ручки, найдём сначала стоимость синих ручек, а потом красных:

46 · 7 = 322 (р.) — стоимость синих ручек,

46 · 4 = 184 (р.) — стоимость красных ручек.

Стоимость красных ручек можно было найти и по другому, вычесть из стоимости синих ручек их разность в цене с красными ручками:

322 — 138 = 184 (р.).

Таким образом, задачу на нахождение неизвестного по двум разностям можно решить двумя способами:

1-й способ: 2-й способ:
1) 7 — 4 = 3 (руч.) 1) 7 — 4 = 3 (руч.)
2) 138 : 3 = 46 (р.) 2) 138 : 3 = 46 (р.)
3) 46 · 7 = 322 (р.) 3) 46 · 7 = 322 (р.)
4) 46 · 4 = 184 (р.) 4) 322 — 138 = 184 (р.)

Ответ: Синие ручки стоят 322 рублей, а красные ручки — 184 рубля.

Задача 2. В среду привезли 6 мешков картошки, а в четверг — 10 таких же мешков. Масса мешков с картошкой, привезённых в среду, на 140 кг меньше, чем масса мешков с картошкой, привезённых в четверг. Найти массу картошки за среду и за четверг.

Данную задачу можно записать кратко с помощью таблицы:

Масса мешка Кол-во мешков Общая масса
среда ? одинаково 6 ? 140
четверг ? 10 ?

Решение: Разность в массе между мешками с картошкой, привезённых в среду и четверг, нам известна — 140 кг. Можно найти ещё одну разность — на сколько больше мешков привезли в четверг, чем в среду:

Теперь по двум данным разностям можно узнать массу одного мешка:

Затем, зная массу одного мешка картошки, можно найти массу мешков, привезённых в среду:

Массу мешков с картошкой, привезённых в четверг, можно найти двумя способами: первый способ — умножить массу одного мешка на количество мешков:

Второй способ — прибавить к массе мешков, привезённых в среду, 140 кг (именно на столько меньше они весят, чем мешки, привезённые в четверг):

210 + 140 = 350 (кг).

Таким образом, у этой задачи два способа решения:

1-й способ: 2-й способ:
1) 10 — 6 = 4 (меш.) 1) 10 — 6 = 4 (меш.)
2) 140 : 4 = 35 (кг) 2) 140 : 4 = 35 (кг)
3) 35 · 6 = 210 (кг) 3) 35 · 6 = 210 (кг)
4) 35 · 10 = 350 (кг) 4) 210 + 140 = 350 (кг)
Читайте также:  Способ борьбы с травой

Ответ: Масса картошки, привезённой в среду, равна 210 кг, а картошки, привезённой в четверг, — 350 кг.

Источник

Задачи на сплавы и смеси на ЕГЭ 2019 с решением

Как правило, ученики очень не любят задачи на сплавы и смеси. Для них они являются сложными и непонятными.

Поэтому многие даже время не тратят на попытки решения такой задачи в ЕГЭ, а просто пропускают ее. А зря!

Сейчас покажем, как можно решить такую задачу, выполнив всего три действия.

Как решить задачу на смеси и сплавы: 3 действия

Итак, решение любой задачи на смеси и сплавы сводится к выполнению трех действий:

  1. Необходимо составить таблицу, в которой указываем общую массу каждого вещества и чистую массу каждого вещества. Эти данные содержатся в условии задачи. Если какие-то данные в условии отсутствуют, то обозначаем их как неизвестные — х, у.
  2. Составляем систему уравнений, основываясь на том, что при соединении двух смесей (или сплавов) их массы складываются. Т.е. мы складываем как общую массу двух изначальных смесей (или сплавов), так и чистую массу каждого вещества, содержащихся в них. Решаем полученную систему уравнений.
  3. После решения системы уравнений и нахождения всех неизвестных обязательно возвращаемся к условию задачи и смотрим, что требовалось найти. Многие ученики, решив правильно систему уравнений, неправильно записывают ответ. Ведь решение системы – это еще не ответ к задаче! Вернитесь к условиям задачи, прочитайте, что именно требовалось найти, и запишите ответ.

Примеры решения задач на смеси: от простого к сложному

А теперь разберем на примерах, как с помощью этих трех действий решать задачи на смеси и сплавы.

Задача 1

Смешали 3 литра раствора, содержащего 20% кислоты, и 5 литров раствора, содержащего 40% той же кислоты. Какова концентрация кислоты в полученном растворе.

Для решения задачи выполняем три действия, о которых мы говорили выше:

1. Составляем таблицу, в которой указываем общую массу раствора и массу чистого вещества, то есть в нашем случае – кислоты.

Из условий задачи имеем три раствора:

Раствор 1: 3 литра с 20% кислотой, т.е. общая масса = 3 литра, масса чистого вещества = 3 * 20% = 3 * 0,2 = 0,6

Раствор 2: 5 литров с 40% кислотой, т.е. общая масса = 5 литров, масса чистого вещества = 5 * 40% = 5 * 0,4 = 2

Раствор 3: какое-то количество раствора (обозначим его общую массу за х) с какой-то концентрацией кислоты (обозначим ее чистую массу за у), заносим эти данные в таблицу:Первое действие выполнено, переходим ко второму.

2. Составляем уравнения. Вспоминаем, что общая масса раствора 3 является суммой общих масс раствора 1 и раствора 2. А масса чистого вещества в растворе 3 является суммой массы чистового вещества в растворе 1 и массы чистового вещества в растворе 2. Таким образом, получаем:

Решаем простейшее уравнение и получаем, что х = 8, а у = 2,6. Таким образом, раствор 3 получился 8 литров, из которых 2,6 литра – это кислота.

Но ответ к задаче записывать рано! Переходим к третьему действию решения нашей задачи.

3. Возвращаемся к условию задачи и вспоминаем, а что же требовалось найти. В нашей задаче требовалось определить концентрацию кислоты в растворе 3. Когда мы решили уравнения, мы нашли общую массу раствора 3 и массу чистого вещества (кислоты), содержащегося в нем.

Читайте также:  Это американский способ борьбы

Чтобы определить концентрацию вещества необходимо разделить массу чистого вещества на общую массу раствора.

Таким образом, концентрация кислоты в растворе 3 равна:

Переводим долю вещества в проценты. Для этого умножаем полученный результат на 100:

Задача 2

Газ в сосуде А содержал 21% кислорода, а газ в сосуде В содержал 5% кислорода. Масса газа в сосуде А была больше массы газа в сосуде В на 300 г. Когда перегородку между сосудами убрали, газы перемешались, и получился третий газ, который содержит 14,6% кислорода. Найти массу третьего газа.

1. Составляем таблицу. Для этого обозначим массу газа в сосуде В – х. Остальные данные берем из условий задачи и формируем таблицу:2. Составляем уравнение. Известно, что третий газ имеет содержание кислорода 14,6%, соответственно мы можем приравнять массу чистого вещества газа 3 к 0,146 * (х + (х +300)). Получим уравнение:

(х +300) * 0,21 + х * 0,05 = 0,146 (х + (х +300))

0,21х + 63 + 0,05х = 0,292х + 43,8

0,26х + 63 = 0,292х + 43,8

3. Возвращаемся к условиям задачи и вспоминаем, что нужно было найти. А найти нам нужно было массу третьего газа. Подставляем в уравнение общей массы газа 3 из таблицы и получаем:

600 + 600 + 300 = 1500 г

Ответ: масса третьего газа равна 1500 г.

Задача 3

Смешали 40%ый и 15%ый растворы кислоты, затем добавили 3 кг чистой воды, в результате чего получили 20%ый раствор кислоты. Если бы вместо 3 кг воды добавили 3 кг 80% раствора той же кислоты, то получили бы 50%ый раствор кислоты. Сколько килограммов 40%го и 15%го растворов кислоты было смешано?

1. Составляем таблицу. По условиям задачи мы имеем пять растворов:

Раствор 1: 40%ая кислота. Обозначим ее массу за х, тогда масса чистого вещества = х * 40% = 0,4х

Раствор 2: 15%ая кислота. Обозначим ее массу за у, тогда масса чистого вещества = х * 15% = 0,15х

Вода: вода, масса которой равна 3 кг. Концентрация кислоты в воде равна 0. Таким образом, масса чистого вещества равна 3 * 0 = 0

Раствор 3: 80%ая кислота. Ее масса по условию задачи равна 3 кг, тогда масса чистого вещества равна 3 * 80% = 3 *0,8 = 2,4

Раствор 4: соединение раствора 1, раствора 2 и воды. Таким образом, общая масса полученного раствора равна х + у + 3. А масса чистого вещества в этом растворе равна 0,4х + 0,15у + 0

Раствор 5: соединение раствора 1, раствора 2 и раствора 3. Таким образом, общая масса полученного раствора равна х + у + 3. А масса чистого вещества в этом растворе равна 0,4х + 0,15у + 2,4.

Сводим полученные результаты в таблицу:2. Составляем уравнение.

По условиям задачи раствор 5 имеет концентрацию 50%. Таким образом, чтобы получить массу чистого вещества в растворе 5 нужно его общую массу умножить на концентрацию. Получаем (х + у + 3) * 0,5. Теперь берем массу чистого вещества раствора 5, которую мы выразили в таблице и приравниваем два этих уравнения:

(х + у + 3) * 0,5 = 0,4х + 0,15у + 2,4

Аналогично поступаем с раствором 4. По условиям задачи его концентрация равна 20%. Тогда получаем следующее уравнение:

(х + у + 3) * 0,2 = 0,4х + 0,15у

Объединяем полученные уравнения в систему:Решаем систему и получаем х = 3,4, у = 1,6

3. Возвращаемся к условиям задачи.

По условиям задачи необходимо было найти, какое количество килограммов 40%го и 15%го растворов кислоты было смешано. Общая масса 40%й кислоты мы обозначали х, а общую массу 15%й кислоты мы обозначили у. Следовательно, масса 40%й кислоты = 3,4 кг, а масса15%й кислоты = 1,6 кг.

Читайте также:  Способ лечения при тонзиллите

Ответ: масса 40%й кислоты = 3,4 кг, а масса15%й кислоты = 1,6 кг.

Примеры решения задач на сплавы: от простого к сложному

Задача 1

Бронза является сплавом меди и олова (в разных пропорциях). Кусок бронзы, содержащий 1/12 часть олова, сплавляется с другим куском, содержащим 1/10 часть олова. Полученный сплав содержит 1/11 часть олова. Найдите вес второго куска, если вес первого равен 84 кг

1. Составим таблицу. Обозначим массу второго куска – х.2. Составим уравнение. По условию задачи сплав 3 содержит 1/11 часть олова, тогда масса чистого вещества равна 1/11 * (84 + х). Таким образом, можно составить следующее уравнение:

1/12 * 84 + 1/10 * х = 1/11 * (84 + х)

7 + х/10 = 84/11 + х/11

3. Возвращаемся к условию задачи. Найти нужно было вес второго куска. Вес второго куска равен 70 кг.

Задача 2

Имеются два сплава меди со свинцом. Один сплав содержит 15% меди, а другой 65%. Сколько нужно взять каждого сплава, чтобы получилось 200г сплава, содержащего 30% меди?

1. Составим таблицу. Пусть масса первого сплава – х, масса второго сплава – у. Остальные данные берем из решения и составляем таблицу:2. По условиям задачи масса третьего сплава равна 200 г, значит:

Содержание меди в третьем сплаве по условиям задачи равно 30%, т.е. масса чистого вещества равна 0,3(х + у). Следовательно, берем массу чистого вещества из таблицы и приравниваем:

0,15х + 0,65у = 0,3(х + у)

Получившиеся уравнения сводим в систему и решаем ее:х = 200 – у

0,15(200 – у) + 0,65у = 0,3 * 200

30 – 0,15у + 0,65у = 60

3. Возвращаемся к условиям задачи. Необходимо было найти массу первого и второго сплава. Масса первого сплава — 140 г, масса второго сплава -60 г.

Ответ: 140 г и 60 г.

Задача 3

В первом сплаве содержание меди составляет 70%, а во втором – 40%. В каком отношении надо взять эти сплавы, чтобы получить из них новый сплав, который содержит 50% меди?

1. Составим таблицу. Обозначим массу первого сплава – х, массу второго сплава – у. Тогда:2. По условиям задачи содержание меди в третьем сплаве равно 50%. Таким образом, масса чистого вещества равна 0,5 (х + у). Приравняем полученное уравнение к массе чистого вещества в составе третьего сплава из таблицы, получим:

0,7х + 0,4у = 0,5 (х + у)

0,7х + 0,4у = 0,5х + 0,5у

3. Возвращаемся к условию задачи. Необходимо было определить отношение первого и второго сплавов в третьем сплаве. Отношение сплавов равно ½.

Итак, решение задач на сплавы и смеси можно свести к трем действиям: составление таблицы, составление уравнения (или системы уравнений), возвращение к условиям задачи, чтобы дать ответ на поставленный вопрос. Задание 11 ЕГЭ по математике профильного уровня является одной из самых сложных задач, так как может содержать текстовую задачу любого типа. Это может быть как задача на сплавы и смеси, так и задача на движение, работу, проценты. Как решать все эти задачи вы можете узнать на нашем сайте.

Источник

Оцените статью
Разные способы