- Матрицы: примеры с решением и объяснением
- Сложение и вычитание
- Готовые работы на аналогичную тему
- Умножение матрицы на число
- Произведение матричных таблиц
- Нахождение определителя матрицы
- Обратные матрицы
- Транспонирование матричных таблиц
- Математика для чайников. Матрицы и основные действия над ними
- Определение матрицы
- Операции сложения и вычитания матриц
- Умножение матрицы на число
- Операция умножения матриц
- Операция транспонирования матрицы
- Определитель матрицы
- Решение матриц.
- Методы решения матриц.
- Нахождение определителей 2-го порядка.
- Методы нахождения определителей 3го порядка.
- Решение обратной матрицы.
- Решение систем матриц.
Матрицы: примеры с решением и объяснением
Вы будете перенаправлены на Автор24
Матрицы представляют собой таблицы чисел, взаимосвязанных между собой. Над ними возможно проводить ряд разнообразных операций, о которых мы расскажем вам ниже.
Размер матрицы определяется её порядками — количеством строчек $m$ и столбцов $n$, которые в ней присутствуют. Строчки образованы элементами, стоящими на горизонтальных линиях, а столбцы — элементами, стоящими на прямых вертикальных линиях. В случае если количество строчек эквивалентно количеству столбцов — порядок рассматриваемой таблички определяется лишь одним значением $m = n$.
Для любого элемента матрицы номер строчки, в которой он находится, записывается первым в индексе, а номер столбца — вторым, то есть запись $a_
Сложение и вычитание
Итак, о сложении и вычитании. Эти действия возможно проводить только с матрицами одинакового размера.
Для того чтобы осуществить эти действия, необходимо провести сложение или вычитание каждого элемента матрицы с элементом другой матрицы, стоящим на той же позиции, что элемент в первой.
В качестве примера найдём сумму $A+B$, где:
Сумма любого элемента новой полученной матричной таблички $A + B$ равна $a_
Вычитание для двух матриц $A-B$ осуществляется аналогично, но каждый элемент новой матрицы результата будет вычисляться по формуле $a_
Готовые работы на аналогичную тему
Обратите внимание, что сложение и вычитание для матриц возможно осуществлять только если их порядки одинаковые.
Решите следующие матричные примеры: $A + B$; $A – B$.
$A=\begin
$B=\begin
Объяснение:
Действия выполняем для каждой пары элементов $a_
$A+B=\begin
$A-B=\begin
Умножение матрицы на число
Для того чтобы произвести умножение матричной таблички на какое-либо число, нужно каждый её элемент умножить на это число, то есть любой элемент новой матрицы $C$, являющейся результатом произведения $A$ на $λ$ будет равен $с_
Умножьте $A$ на $λ$, где $A=\begin
$A \cdot λ = 5 \cdot \begin
Произведение матричных таблиц
Эта задача несколько сложнее предыдущих, но при этом в ней также нет ничего сложного.
Для осуществления умножения двух матриц $A \cdot B$ количество столбцов в $A$ должно совпадать с количеством строчек в $B$.
Математически это можно записать так:
То есть видя перемножаемые исходные матрицы можно сразу определить порядки получаемой новой. Например, если необходимо перемножить $A_<3 \times 2>$ и $B_<2 \times 3>$ — полученный результат будет иметь размер $3 \times 3$:
Если число столбцов первого матричного множителя не совпадает с количеством строчек второго матричного множителя, то умножение выполнить невозможно.
$A \times B = ?$, если $A=\begin
$A \times B = \begin
$A \times B= \begin
Нахождение определителя матрицы
Определитель матрицы обозначается как $Δ$ или $\det$.
Детерминант возможно найти только для квадратных разновидностей матриц.
В простейшем случае, когда матрица состоит из всего одного элемента, её определитель равен этому элементу: $det A = |a_<11>|= a_<11>$
Вычислить определитель от матрицы порядка двух можно следуя такому правилу:
Определитель матрицы размера 2 равен разности произведений элементов, стоящих на главной диагонали с произведением элементов с побочной диагонали:
В случае если определитель матрицы задан размером $3 \times 3$, то найти его можно используя мнемонические правила: Саррюса или треугольников, также можно разложить матрицу по строчке или столбцу или воспользоваться преобразованиями Гаусса.
Для определителей большего размера можно использовать преобразования Гаусса и разложение по строчке.
Обратные матрицы
По аналогии с обычным умножением числа на обратное ему число $(1+\frac1x= 1)$, умножение обратной матрицы $A^<-1>$ на исходную матрицу даёт в результате единичную матрицу $E$.
Самый простой метод решения при поиске обратной матрицы — Жордана-Гаусса. Рядом с матрицей-подопытным кроликом записывается единичная того же размера, а затем исходная с помощью преобразований приводится к единичной, причём все выполняемые действия повторяются и с $E$.
Получить обратную матрицу.
Решение:
Пишем вместе $A$ и справа от неё соответствующего размера $E$:
$ \begin
Получаем нуль в последней строчке на первой позиции:прибавляем к ней верхнюю, умноженную на $-3$:
$ \begin
Теперь обнуляем последний элемент первой строчки. Для этого к верхней строчке плюсуем нижнюю:
$ \begin
Делим вторую на $-2$:
$ \begin
Транспонирование матричных таблиц
Транспонирование — это смена строк и столбцов в матрице или определителе местами с сохранением их исходного порядка. Определитель траспонированной матричной таблички $A^T$ будет равен определителю исходной матрицы $A$.
Транспонируйте матрицу $A$ и проверьте себя, найдя определитель $A$ и транспонированной матричной таблички.
$A=\begin
Решение:
Применим метод Саррюса для детерминанта:
$\det A= 1 \cdot 5 \cdot (-3) + 2 \cdot 6 \cdot (-1) + 3 \cdot 4 \cdot (-2) – 2 \cdot 4 \cdot (-3) – 1 \cdot 6 \cdot (-2) – 3 \cdot 5 \cdot (-1) = -15 – 12 – 24+ 24 + 12 + 15 = 0$.
Мы получили вырожденную матрицу.
Теперь произведём транспонирование $A$, для этого повалим матрицу на её правый бок:
$A^T = \begin
Найдём для $A^T$ определитель, используя то же правило:
$det A^T = 1 \cdot 5 \cdot (-3) + 4 \cdot (-2) \cdot 3 + (-1) \cdot 2 \cdot 6 – 4 \cdot 2 \cdot (-3) – 1 \cdot (-2) \cdot 6 – (- 1) \cdot 5 \cdot 3 = — 15 -24 — 12+24+12+15 = 0$.
Источник
Математика для чайников. Матрицы и основные действия над ними
1-й курс, высшая математика, изучаем матрицы и основные действия над ними. Здесь мы систематизируем основные операции, которые можно проводить с матрицами. С чего начать знакомство с матрицами? Конечно, с самого простого — определений, основных понятий и простейших операций. Заверяем, матрицы поймут все, кто уделит им хотя бы немного времени!
Определение матрицы
Матрица – это прямоугольная таблица элементов. Ну а если простым языком – таблица чисел.
Обычно матрицы обозначаются прописными латинскими буквами. Например, матрица A, матрица B и так далее. Матрицы могут быть разного размера: прямоугольные, квадратные, также есть матрицы-строки и матрицы-столбцы, называемые векторами. Размер матрицы определяется количеством строк и столбцов. Например, запишем прямоугольную матрицу размера m на n, где m – количество строк, а n – количество столбцов.
Элементы, для которых i=j (a11, a22, .. ) образуют главную диагональ матрицы, и называются диагональными.
Что можно делать с матрицами? Складывать/вычитать, умножать на число, умножать между собой, транспонировать. Теперь обо всех этих основных операциях над матрицами по порядку.
Операции сложения и вычитания матриц
Сразу предупредим, что можно складывать только матрицы одинакового размера. В результате получится матрица того же размера. Складывать (или вычитать) матрицы просто – достаточно только сложить их соответствующие элементы. Приведем пример. Выполним сложение двух матриц A и В размером два на два.
Вычитание выполняется по аналогии, только с противоположным знаком.
Умножение матрицы на число
На произвольное число можно умножить любую матрицу. Чтобы сделать это, нужно умножить на это число каждый ее элемент. Например, умножим матрицу A из первого примера на число 5:
Операция умножения матриц
Перемножить между собой удастся не все матрицы. Например, у нас есть две матрицы — A и B. Их можно умножить друг на друга только в том случае, если число столбцов матрицы А равно числу строк матрицы В. При этом каждый элемент получившейся матрицы, стоящий в i-ой строке и j-м столбце, будет равен сумме произведений соответствующих элементов в i-й строке первого множителя и j-м столбце второго. Чтобы понять этот алгоритм, запишем, как умножаются две квадратные матрицы:
И пример с реальными числами. Умножим матрицы:
Операция транспонирования матрицы
Транспонирование матрицы – это операция, когда соответствующие строки и столбцы меняются местами. Например, транспонируем матрицу A из первого примера:
Определитель матрицы
Определитель, о же детерминант – одно из основных понятий линейной алгебры. Когда-то люди придумали линейные уравнения, а за ними пришлось выдумать и определитель. В итоге, разбираться со всем этим предстоит вам, так что, последний рывок!
Определитель – это численная характеристика квадратной матрицы, которая нужна для решения многих задач.
Чтобы посчитать определитель самой простой квадратной матрицы, нужно вычислить разность произведений элементов главной и побочной диагоналей.
Определитель матрицы первого порядка, то есть состоящей из одного элемента, равен этому элементу.
А если матрица три на три? Тут уже посложнее, но справиться можно.
Для такой матрицы значение определителя равно сумме произведений элементов главной диагонали и произведений элементов лежащих на треугольниках с гранью параллельной главной диагонали, от которой вычитается произведение элементов побочной диагонали и произведение элементов лежащих на треугольниках с гранью параллельной побочной диагонали.
К счастью, вычислять определители матриц больших размеров на практике приходится редко.
Здесь мы рассмотрели основные операции над матрицами. Конечно, в реальной жизни можно ни разу так и не встретить даже намека на матричную систему уравнений или же наоборот — столкнуться с гораздо более сложными случаями, когда придется действительно поломать голову. Именно для таких случаев и существует профессиональный студенческий сервис. Обращайтесь за помощью, получайте качественное и подробное решение, наслаждайтесь успехами в учебе и свободным временем.
Источник
Решение матриц.
Решение матриц – это понятие, которое обобщает все возможные операции, производимые с матрицами. Математическая матрица – таблица элементов. О такой таблице, где m строк и n столбцов, говорят, что это матрица имеет размерность m на n.
Общий вид матрицы:
Для решения матриц необходимо понимать, что такое матрица и знать основные ее параметры. Основные элементы матрицы:
Основные виды матриц:
- Квадратная – такая матрица, где число строк = числу столбцов (m=n).
- Нулевая – где все элементы матрицы = 0.
- Транспонированная матрица — матрица В, которая была получена из исходной матрицы A путем замены строк на столбцы.
- Единичная – все элементы главной диагонали = 1, все остальные = 0.
- Обратная матрица — матрица, при умножении на которую исходная матрица даёт в результате единичную матрицу.
Матрица может быть симметричной относительно главной и побочной диагонали. Т.е., если а12=а21, а13=а31,….а23=а32…. аm-1n=аmn-1, то матрица симметрична относительно главной диагонали. Симметричными могут быть лишь квадратные матрицы.
Далее приведем основные методы решения матриц.
Методы решения матриц.
Почти все методы решения матрицы заключаются в нахождении ее определителя n-го порядка и большинство из них довольно громоздки. Чтобы найти определитель 2го и 3го порядка есть другие, более рациональные способы.
Нахождение определителей 2-го порядка.
Для вычисления определителя матрицы А 2го порядка, необходимо из произведения элементов главной диагонали вычесть произведение элементов побочной диагонали:
Методы нахождения определителей 3го порядка.
Ниже приведены правила для нахождения определителя 3го порядка.
Правило треугольника при решении матриц.
Упрощенно правило треугольника, как одного из методов решения матриц, можно изобразить таким образом:
Другими словами, произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «+»; так же, для 2го определителя — соответствующие произведения берутся со знаком «-«, то есть по такой схеме:
Правило Саррюса при решении матриц.
При решении матриц правилом Саррюса, справа от определителя дописывают первые 2 столбца и произведения соответствующих элементов на главной диагонали и на диагоналях, которые ей параллельны, берут со знаком «+»; а произведения соответствующих элементов побочной диагонали и диагоналей, которые ей параллельны, со знаком «-«:
Разложение определителя по строке или столбцу при решении матриц.
Определитель равен сумме произведений элементов строки определителя на их алгебраические дополнения. Обычно выбирают ту строку/столбец, в которой/ом есть нули. Строку либо столбец, по которой/ому ведется разложение, будут обозначать стрелкой.
Приведение определителя к треугольному виду при решении матриц.
При решении матриц методом приведения определителя к треугольному виду, работают так: с помощью простейших преобразований над строками либо столбцами, определитель становится треугольного вида и тогда его значение, в соответствии со свойствами определителя, будет равно произведению элементов, которые стоят на главной диагонали.
Теорема Лапласа при решении матриц.
Решая матрицы по теореме Лапласа, необходимо знать непосредственно саму теорему. Теорема Лапласа: Пусть Δ – это определитель n-го порядка. Выбираем в нем любые k строк (либо столбцов), при условии k ≤ n – 1. В таком случае сумма произведений всех миноров k-го порядка, содержащихся в выбранных k строках (столбцах), на их алгебраические дополнения будет равна определителю.
Решение обратной матрицы.
Последовательность действий для решения обратной матрицы:
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Понять, квадратная ли данная матрица. В случае отрицательного ответа становится ясно, что обратной матрицы для нее не может быть.
- Вычисляем алгебраические дополнения.
- Составляем союзную (взаимную, присоединённую) матрицу C.
- Составляем обратную матрицу из алгебраических дополнений: все элементы присоединённой матрицы C делим на определитель начальной матрицы. Итоговая матрица будет искомой обратной матрицей относительно заданной.
- Проверяем выполненную работу: умножаем матрицу начальную и полученную матрицы, результатом должна стать единичная матрица.
Решение систем матриц.
Для решения систем матриц наиболее часто используют метод Гаусса.
Метод Гаусса — это стандартный способ решения систем линейных алгебраических уравнений (СЛАУ) и он заключается в том, что последовательно исключаются переменные, т.е., при помощи элементарных изменений систему уравнений доводят до эквивалентной системы треугольного вида и из нее, последовательно, начиная с последних (по номеру), находят каждый элемент системы.
Метод Гаусса является самым универсальным и лучшим инструментом для нахождения решения матриц. Если у системы бесконечное множество решений или система является несовместимой, то ее нельзя решать по правилу Крамера и матричным методом.
Метод Гаусса подразумевает также прямой (приведение расширенной матрицы к ступенчатому виду, т.е. получение нулей под главной диагональю) и обратный (получение нулей над главной диагональю расширенной матрицы) ходы. Прямой ход и есть метод Гаусса, обратный — метод Гаусса-Жордана. Метод Гаусса-Жордана отличается от метода Гаусса лишь последовательностью исключения переменных.
Источник