Решение систем линейных уравнений матричным методом: онлайн-калькулятор
Этот способ применяется в заданиях, где число уравнений совпадает с количеством неизвестных переменных. Определитель основной матрицы при этом не должен быть нулевым.
В основу калькулятора от Zaochnik заложена система формул, которая позволяет ввести имеющиеся данные и моментально получить точный ответ. Решение систем линейных уравнений матричным методом включает преобразование уравнения, нахождение определителя и обратной матрицы.
Рассмотрим несколько примеров решений СЛАУ с помощью онлайн-калькулятора
Онлайн-калькулятор позволяет находить решение СЛАУ, когда свободные члены, переменные и коэффициенты при них являются вещественными числами. Другими словами, калькулятор работает с целыми числами и дробями, а вот решение систем с комплексными коэффициентами ему не по зубам. Максимальное количество неизвестных в системе– 6.
Возьмем простую систему уравнений с двумя неизвестными:
x 1 + 2 x 2 = 11 3 x 1 — x 2 = 12
<>Для того, чтобы решить ее матричным методом с помощью онлайн-калькулятора:
- Укажем количество неизвестных в системе:
- Впишите коэффициенты при переменных в соответствующие поля:
- Нажмите «Рассчитать»
Калькулятор сам произведет все вычисления, а вы сможете не только получить ответ, но и ознакомиться подробным решением:
Рассмотрим более сложную систему с большим количеством неизвестных:
2 x 1 + 10 x 2 — 3 x 3 = 38 — 3 x 1 — 24 x 2 + 5 x 3 = — 86 x 1 + x 2 — 5 x 3 = 27
По аналогии с первым примером, укажем количество неизвестных, введем в поля соответствующие коэффициенты, и нажмем «Рассчитать»:
Калькулятор выдаст ответ с ходом решения и промежуточными выкладками:
Заметьте, если вы вдруг введете неверные коэффициенты или запишите такую систему, которая не имеет решения, калькулятор выдаст соответствующее сообщение:
Источник
Матричный метод решения СЛАУ: пример решения с помощью обратной матрицы
В данной статье мы расскажем о матричном методе решения системы линейных алгебраических уравнений, найдем его определение и приведем примеры решения.
Метод обратной матрицы — это метод, использующийся при решении СЛАУ в том случае, если число неизвестных равняется числу уравнений.
Найти решение системы n линейных уравнений с n неизвестными:
a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n
Матричный вид записи: А × X = B
где А = а 11 а 12 ⋯ а 1 n а 21 а 22 ⋯ а 2 n ⋯ ⋯ ⋯ ⋯ а n 1 а n 2 ⋯ а n n — матрица системы.
X = x 1 x 2 ⋮ x n — столбец неизвестных,
B = b 1 b 2 ⋮ b n — столбец свободных коэффициентов.
Из уравнения, которое мы получили, необходимо выразить X . Для этого нужно умножить обе части матричного уравнения слева на A — 1 :
A — 1 × A × X = A — 1 × B .
Так как А — 1 × А = Е , то Е × X = А — 1 × В или X = А — 1 × В .
Обратная матрица к матрице А имеет право на существование только, если выполняется условие d e t A н е р а в е н н у л ю . Поэтому при решении СЛАУ методом обратной матрицы, в первую очередь находится d e t А .
В том случае, если d e t A н е р а в е н н у л ю , у системы имеется только один вариант решения: при помощи метода обратной матрицы. Если d e t А = 0 , то систему нельзя решить данным методом.
Пример решения системы линейных уравнений с помощью метода обратной матрицы
Решаем СЛАУ методом обратной матрицы:
2 x 1 — 4 x 2 + 3 x 3 = 1 x 1 — 2 x 2 + 4 x 3 = 3 3 x 1 — x 2 + 5 x 3 = 2
- Записываем систему в виде матричного уравнения А X = B , где
А = 2 — 4 3 1 — 2 4 3 — 1 5 , X = x 1 x 2 x 3 , B = 1 3 2 .
- Выражаем из этого уравнения X :
- Находим определитель матрицы А :
d e t A = 2 — 4 3 1 — 2 4 3 — 1 5 = 2 × ( — 2 ) × 5 + 3 × ( — 4 ) × 4 + 3 × ( — 1 ) × 1 — 3 × ( — 2 ) × 3 — — 1 × ( — 4 ) × 5 — 2 × 4 — ( — 1 ) = — 20 — 48 — 3 + 18 + 20 + 8 = — 25
d e t А не равняется 0, следовательно, для этой системы подходит метод решения обратной матрицей.
- Находим обратную матрицу А — 1 при помощи союзной матрицы. Вычисляем алгебраические дополнения А i j к соответствующим элементам матрицы А :
А 11 = ( — 1 ) ( 1 + 1 ) — 2 4 — 1 5 = — 10 + 4 = — 6 ,
А 12 = ( — 1 ) 1 + 2 1 4 3 5 = — ( 5 — 12 ) = 7 ,
А 13 = ( — 1 ) 1 + 3 1 — 2 3 — 1 = — 1 + 6 = 5 ,
А 21 = ( — 1 ) 2 + 1 — 4 3 — 1 5 = — ( — 20 + 3 ) = 17 ,
А 22 = ( — 1 ) 2 + 2 2 3 3 5 — 10 — 9 = 1 ,
А 23 = ( — 1 ) 2 + 3 2 — 4 3 — 1 = — ( — 2 + 12 ) = — 10 ,
А 31 = ( — 1 ) 3 + 1 — 4 3 — 2 4 = — 16 + 6 = — 10 ,
А 32 = ( — 1 ) 3 + 2 2 3 1 4 = — ( 8 — 3 ) = — 5 ,
А 33 = ( — 1 ) 3 + 3 2 — 4 1 — 2 = — 4 + 4 = 0 .
- Записываем союзную матрицу А * , которая составлена из алгебраических дополнений матрицы А :
А * = — 6 7 5 17 1 — 10 — 10 — 5 0
- Записываем обратную матрицу согласно формуле:
A — 1 = 1 d e t A ( A * ) T : А — 1 = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 ,
- Умножаем обратную матрицу А — 1 на столбец свободных членов В и получаем решение системы:
X = A — 1 × B = — 1 25 — 6 17 — 10 7 1 — 5 5 — 10 0 1 3 2 = — 1 25 — 6 + 51 — 20 7 + 3 — 10 5 — 30 + 0 = — 1 0 1
Ответ: x 1 = — 1 ; x 2 = 0 ; x 3 = 1
Источник
Решение СЛАУ методом обратной матрицы
Напомним, что решением системы линейных уравнений называется всякая совокупность чисел
Система линейных алгебраических уравнений обычно записывается как (для 3-х переменных):
2x1-3x2+x3 = 4 -x1+2x2+5x3 = 10 3x1-x2+3x3 = -1 | или | 2x-3y+z = 4 -z+2y+5z = 10 3x-y+3z = -1 |
См. также Решение матричных уравнений.
Алгоритм решения
- Вычисляется определитель матрицы A . Если определитель равен нулю, то конец решения. Система имеет бесконечное множество решений.
- При определителе отличном от нуля, через алгебраические дополнения находится обратная матрица A -1 .
- Вектор решения X =
1, x2, . xn> получается умножением обратной матрицы на вектор результата B .
Пример №1 . Найти решение системы матричным методом. Запишем матрицу в виде:
|
Вектор B:
B T = (3,-2,-1)
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆ = 2•(1•(-2)-2•0)-(-2•(3•(-2)-2•1))+1•(3•0-1•1) = -21
Итак, определитель -21 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Транспонированная матрица
A T = |
|
Алгебраические дополнения.
A1,1 = (-1) 1+1 |
| ∆1,1 = (1•(-2)-0•2) = -2 |
A1,2 = (-1) 1+2 |
| ∆1,2 = -(3•(-2)-1•2) = 8 |
A1,3 = (-1) 1+3 |
| ∆1,3 = (3•0-1•1) = -1 |
A2,1 = (-1) 2+1 |
| ∆2,1 = -(-2•(-2)-0•1) = -4 |
A2,2 = (-1) 2+2 |
| ∆2,2 = (2•(-2)-1•1) = -5 |
A2,3 = (-1) 2+3 |
| ∆2,3 = -(2•0-1•(-2)) = -2 |
A3,1 = (-1) 3+1 |
| ∆3,1 = (-2•2-1•1) = -5 |
A3,2 = (-1) 3+2 |
| ∆3,2 = -(2•2-3•1) = -1 |
A3,3 = (-1) 3+3 |
| ∆3,3 = (2•1-3•(-2)) = 8 |
Обратная матрица:
A -1 = -1/21 |
|
Вектор результатов X = A -1 • B
|
X T = (1,0,1)
x1 = -21 / -21 = 1
x2 = 0 / -21 = 0
x3 = -21 / -21 = 1
Проверка:
2•1+3•0+1•1 = 3
-2•1+1•0+0•1 = -2
1•1+2•0+-2•1 = -1
Запишем матрицу в виде:
Вектор B:
B T = (1,2,3,4)
Главный определитель
Минор для (1,1):
= 3•(3•2-6•2)-5•(3•2-6•1)+7•(3•2-3•1) = 3
Определитель минора
∆ = 2•(-3)-3•0+5•3-4•3 = -3
Вектор результатов X
X = A -1 ∙ B
Пример №3 . Систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы. Сделать проверку полученного решения.
Решение:xls
Пример №4 . Записать систему уравнений в матричной форме и решить с помощью обратной матрицы.
Решение:xls
Пример №5 . Дана система трех линейных уравнений с тремя неизвестными. Требуется: 1) найти ее решение с помощью формул Крамера; 2) записать систему в матричной форме и решить ее средствами матричного исчисления.
Методические рекомендации. После решения методом Крамера, найдите кнопку «Решение методом обратной матрицы для исходных данных». Вы получите соответствующее решение. Таким образом, данные вновь заполнять не придется.
Решение. Обозначим через А — матрицу коэффициентов при неизвестных; X — матрицу-столбец неизвестных; B — матрицу-столбец свободных членов:
|
Вектор B:
B T =(4,-3,-3)
С учетом этих обозначений данная система уравнений принимает следующую матричную форму: А*Х = B.
Если матрица А — невырожденная (ее определитель отличен от нуля, то она имеет обратную матрицу А -1 . Умножив обе части уравнения на А -1 , получим: А -1 *А*Х = А -1 *B, А -1 *А=Е.
Это равенство называется матричной записью решения системы линейных уравнений. Для нахождения решения системы уравнений необходимо вычислить обратную матрицу А -1 .
Система будет иметь решение, если определитель матрицы A отличен от нуля.
Найдем главный определитель.
∆=-1•(-2•(-1)-1•1)-3•(3•(-1)-1•0)+2•(3•1-(-2•0))=14
Итак, определитель 14 ≠ 0, поэтому продолжаем решение. Для этого найдем обратную матрицу через алгебраические дополнения.
Пусть имеем невырожденную матрицу А:
A= |
|
Тогда:
A=1/∆ |
|
где Aij — алгебраическое дополнение элемента aij в определителе матрицы А, которое является произведением (—1) i+j на минор (определитель) n-1 порядка, полученный вычеркиванием i-й строки и j-го столбца в определителе матрицы А.
Транспонированная матрица
A T = |
|
Вычисляем алгебраические дополнения.
A1,1=(-1) 1+1 |
|
∆1,1=(-2•(-1)-1•1)=1
A1,2=(-1) 1+2 |
|
∆1,2=-(3•(-1)-0•1)=3
A1,3=(-1) 1+3 |
|
∆1,3=(3•1-0•(-2))=3
A2,1=(-1) 2+1 |
|
∆2,1=-(3•(-1)-1•2)=5
A2,2=(-1) 2+2 |
|
∆2,2=(-1•(-1)-0•2)=1
A2,3=(-1) 2+3 |
|
∆2,3=-(-1•1-0•3)=1
A3,1=(-1) 3+1 |
|
∆3,1=(3•1-(-2•2))=7
A3,2=(-1) 3+2 |
|
∆3,2=-(-1•1-3•2)=7
A3,3=(-1) 3+3 |
|
∆3,3=(-1•(-2)-3•3)=-7
Обратная матрица
A -1 =1/14 |
|
Вектор результатов X
X=A -1 • B
|
X=1/14 |
|
X=1/14 |
|
X T =(-1,1,2)
x1= -14 / 14=-1
x2= 14 / 14=1
x3= 28 / 14=2
Проверка.
-1•-1+3•1+0•2=4
3•-1+-2•1+1•2=-3
2•-1+1•1+-1•2=-3
doc:xls
Ответ: -1,1,2.
Пример №6 . Решить неоднородную систему линейных алгебраических уравнений методом обратной матрицы.
Источник