Решить геометрическим способом злп

Сервис для решения задач по линейному программированию

и другие интересные типовые задачи English

Пример №2. Решение задачи линейного программирования графическим методом.
Функция достигает наименьшего значения в точке

при следующих ограничениях:

x1 + 2 x2 8
x1 x2 2
x1 + 2 x2 4
x1 1

x1 ≥ 0 x2 ≥ 0

Точки, координаты которых удовлетворяют одновременно всем неравенствам системы ограничений, называются областью допустимых решений.

Очевидно, для нахождения области допустимых решений данной задачи, необходимо последовательно рассмотреть каждое неравенство. (см. шаг 1 — шаг 4)

Последние два шага служат непосредственно для получения ответа. (см. шаг 5 — шаг 6)

Это стандартная схема решения. Если область допустимых решений представляет собой точку или пустое множество, то решение будет короче.

По условию задачи: x1 ≥ 0 x2 ≥ 0.

Если бы это было единственным условием, то область допустимых решений имела бы вид, как на рисунке (вся первая четверть).

Рассмотрим неравенство 1 системы ограничений.

Построим прямую: x1 + 2 x2 = 8

Найдены коородинаты двух точек (0, 4) и (8 ,0). Соединяем их и получаем необходимую прямую (1).

Нас интересуют точки расположенные выше или ниже построенной прямой (1) ?
Вернемся к исходному неравенству.

Преобразуем неравенство, оставив в левой части только x2

Знак неравенства ≤ . Следовательно, нас интересуют точки расположенные ниже построенной прямой (1).

Объединим данное условие с предыдущим рисунком. В итоге получим область допустимых решений, изображенную на рисунке.

Рассмотрим неравенство 2 системы ограничений.

Найдены коородинаты двух точек (0, -2) и (2 ,0). Соединяем их и получаем необходимую прямую (2).

Нас интересуют точки расположенные выше или ниже построенной прямой (2) ?
Вернемся к исходному неравенству.

Преобразуем неравенство, оставив в левой части только x2

Знак неравенства ≥ . Следовательно, нас интересуют точки расположенные выше построенной прямой (2).

Объединим данное условие с предыдущим рисунком. В итоге получим область допустимых решений, изображенную на рисунке.

Рассмотрим неравенство 3 системы ограничений.

Построим прямую: x1 + 2 x2 = 4

Найдены коородинаты двух точек (0, 2) и (4 ,0). Соединяем их и получаем необходимую прямую (3).

Нас интересуют точки расположенные выше или ниже построенной прямой (3) ?
Вернемся к исходному неравенству.

Преобразуем неравенство, оставив в левой части только x2

Знак неравенства ≥ . Следовательно, нас интересуют точки расположенные выше построенной прямой (3).

Читайте также:  Самый хороший способ очистки самогона от сивушных масел

Объединим данное условие с предыдущим рисунком. В итоге получим область допустимых решений, изображенную на рисунке.

Рассмотрим неравенство 4 системы ограничений.

Построим прямую: x1 = 1

Данная прямая параллельна оси OX2 и проходит через точку (1,0) (4)

Знак неравенства ≥ . Следовательно, нас интересуют точки расположенные правее построенной прямой (4).

Объединим данное условие с предыдущим рисунком. В итоге получим область допустимых решений, изображенную на рисунке.

Строим вектор C = (2, 2), координатами которого являются коэффициенты функции F.

Будем перемещать «красную» прямую, перпендикулярно вектору C , от левого нижнего угла к правому верхнему.

В точке, в которой «красная» прямая в первый раз пересечет область допустимых решений, функция F достигает своего наименьшего значения.

В точке, в которой «красная» прямая в последний раз пересечет область допустимых решений, функция F достигает своего наибольшего значения.

Функция F достигает наименьшего значения в точке A. (см. рисунок)

Найдем координаты точки A.
Точка A одновременно принадлежит прямым (3) и (4).

x1 + 2 x2 = 4 => x1 = 1
x1 = 1 x2 = 3/2

Вычислим значение функции F в точке A (1,3/2).

F (A) = 2 * 1 + 2 * 3/2 = 5

x1 = 1

x2 = 3/2

F min = 5

Замечание: если возникли сомнения, что функция F достигает своего минимума в точке А, необходимо найти значение функции в интересующей точке и сравнить с F(A).

Источник

Графический (геометрический) метод решения задач ЛП

Пример 6.1. Решить следующую задачу ли-нейного программирования геометрическим методом:

.

Решение:

Задача линейного программирования задана в стандартной форме и имеет два проектных параметра, следовательно

, воз-можно ее решение геометрическим методом.

1 этап: построение прямых, ограничивающих область допустимых решений ( ОДР).

Рассмотрим систему ограничений задачи линейного програм-мирования (для удобства пронумеруем неравенства):

Рассмотрим первое ограничение, заменим знак неравенства знаком равенства и выразим переменную х2 через х1:

.

Для построения прямой по данному уравнению зададим две произвольные точки, к примеру:

Аналогично определяем точки для остальных ограничений системы и строим по ним прямые, соответствующие каждому неравенству (рис. 1). Прямые пронумеруем согласно принятой ранее схеме.

2 этап: определение решения каждого из нера-венств системы ограничений.

Определим полуплоскости – решения каждого из неравенств.

Рассмотрим первое неравенство системы ограничений задачи. Возьмем какую-либо точку (контрольную точку), не принадлежащую соответствующей данному неравенству прямой, например, точку (0; 0). Подставим ее в рассматриваемое неравенство:

.

При подстановке координат контрольной точки неравенство остается справедливым. Следовательно, множество точек, принадлежащих данной прямой (т.к. неравенство не строгое), а также расположенных ниже ее, будут являться решениями рассматриваемого неравенства (пометим на графике (рис. 1) найденную полуплоскость двумя стрелками направленными вниз рядом с прямой I) .

Аналогично определяем решения других неравенств и соответственно помечаем их графике. В результате график примет следующий вид:

Читайте также:  Эпин экстра способы применения

3 этап: определение ОДР задачи линейного про- граммирования.

Найденные полуплоскости (решения каждого из неравенств системы ограничений) при пересечении образуют многоугольник ABCDEO, который и является ОДР рассматриваемой задачи.

Рис. 1. Область допустимых решений задачи

4 этап: построение вектора-градиента.
Вектор-градиент показывает направление максимизации целевой функции . Определим его координаты: координаты начальной его точки (точки приложения) – (0; 0), координаты второй точки:

Построим данный вектор на графике (рис. 2).

5 этап: построение прямой целевой функ-ции.

Рассмотрим целевую функцию данной задачи:

.

Зададим ей какое-либо значение, к примеру, . Выразим переменную х2 через х1:

.

Для построения прямой по данному уравнению зададим две произвольные точки, к примеру:

Построим прямую соответствующую целевой функции (рис. 2).

Рис. 2. Построение целевой функции F(X) и вектора-градиента С

6 этап: определение максимума целевой функ-ции.

Перемещая прямую F(X) параллельно са-мой себе по направлению вектора-градиента, определяем крайнюю точку (точки) ОДР. Согласно графику (рис. 3), такой точкой является точка С ­– точка пересечения прямых I и II.

Рис. 3. Определение точки максимума целевой функции F(X)

Определим координаты точки С, с этой целью, решим сле-дующую систему линейных уравнений:

Подставим найденные координаты в целевую функцию и найдем ее оптимальное (максимальное) значение:

Ответ: при заданных ограничениях макси-мальное значение целевой функции F(Х)=24, которое достигается в точке С, координаты которой х1=6, х2=4.

Пример 6.2. Решить задачу линейного про- граммирования геометрическим методом:

Решение:

Этапы 1-3 аналогичны соответствующим этапам предыдущей задачи.
4 этап: построение вектора-градиента.
Построение вектора-градиента осуществляется аналогично, как и в предыдущей задаче. Построим данный вектор на графике (рис. 4). Отметим также на данном графике стрелкой направление, обратное вектору-градиенту, – направление минимизации целевой функцииF (X).

5 этап: построение прямой целевой функ-ции.

Построение прямой целевой функции F(X) осуществляется аналогично, как и в предыдущей задаче (результат построения приведен на рис. 4).

Рис. 4. Построение целевой функции F(x) и вектора-градиента С

6 этап: определение оптимума целевой функ-ции.

Перемещая прямую F(x) параллельно са-мой себе в направлении, обратном вектору-градиенту, опреде-ляем крайнюю точку (точки) ОДР. Согласно графику (рис. 5), та- кой точкой является точка О с координатами (0; 0).

Читайте также:  Лечение шизофрении нетрадиционными способами

Рис. 5. Определение точки минимума целевой функции

Подставляя координаты точки минимума в целевую функ-цию, определяем ее оптимальное (минимальное) значение, которое равно 0.
Ответ: при заданных ограничениях минимальное значение целевой функции F(Х)=0, которое достигается в точке О (0; 0).

Пример 6.3. Решить следующую задачу ли-нейного программирования геометрическим методом:

Решение:

Рассматриваемая задача линейного программирования задана в канонической форме, выделим в качестве базисных переменные x 1 и x2.

Составим расширенную матрицу и выделим с помощью метода Жордана- Гаусса базисные переменныеx1 и x 2.

Умножим (поэлементно) первую строку на –3 и сложим со вто-рой:
.

Умножим вторую строку на :

.

Сложим вторую с первой строкой:

.

В результате система ограничений примет следующий вид:

Выразим базисные переменные через свободные:

Выразим целевую функцию также через свободные перемен-ные, для этого подставим полученные значения базисных переменных в целевую функцию:

.

Запишем полученную задачу линейного программирования:

Так как переменные x1 и x2 неотрицательные, то полученную систему ограничений можно записать в следующем виде:

Тогда исходную задачу можно записать в виде следующей эк- вивалентной ей стандартной задаче линейного программирования:

Данная задача имеет два проектных параметра, следовательно, возможно ее решение геометрическим мето-дом.

1 этап: построение прямых, ограничивающих область допустимых решений ( ОДР).

Рассмотрим систему ограничений задачи линейного програм-мирования (для удобства пронумеруем неравенства):

Построим прямые, соответствующие каждому неравенству (рис. 6). Прямые пронумеруем согласно принятой ранее схе-ме.

2 этап: определение решения каждого из нера-венств системы ограничений.

С помощью контрольных точек определим полуплоскости – решения каждого из неравенств, и пометим их на графике (рис. 6) с помощью стрелок.

3 этап: определение ОДР задачи линейного про- граммирования.

Найденные полуплоскости (т.е. решения каждого из неравенств системы ограничений) не имеют общего пересечения (так решения неравенства I противоречат в целом остальным неравенствам системы ограничений), следовательно, система ограничений не совместна и задача линейного программирования в силу этого не имеет решения.

Рис. 6. Фрагмент MathCAD-документа:

построение области допустимых решений задачи

Ответ: рассматриваемая задача линейного программирования не имеет решения в силу несовместности системы ограничений.

Если после подстановки координат контрольной точки в неравенство его смысл нарушается, то решением данного неравенства является полуплоскость не содержащая данную точку (т.е. расположенная по другую сторону прямой).

Направление, обратное вектору-градиенту, соответствует направлению минимизации целевой функции.

Источник

Оцените статью
Разные способы