- Матричный метод онлайн
- Предупреждение
- Матричный метод решения систем линейных уравнений
- Примеры решения системы линейных уравнений матричным методом
- Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.
- Решить систему линейных уравнений матричным методом
- Ввод данных в калькулятор для решения систем линейных уравнений матричным методом
- Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом
- Средствами матричного исчисления
Матричный метод онлайн
Данный онлайн калькулятор решает систему линейных уравнений матричным методом. Дается очень подробное решение. Для решения системы линейных уравнений выберите количество переменных. Выбирайте метод вычисления обратной матрицы. Затем введите данные в ячейки и нажимайте на кнопку «Вычислить».
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Матричный метод решения систем линейных уравнений
Рассмотрим следующую систему линейных уравнений:
(1) |
Для решения системы линейных уравнений (1) матричным методом запишем ее матричном виде:
(3) |
Мы будем предполагать, что матрица A имеет обратное, т.е. определитель матрицы A не равен нулю.
Умножим матричное уравнение (2) на обратную матрицу A −1 . Тогда
A −1 Ax=A −1 b. | (4) |
Учитывая определение обратной матрицы, имеем A −1 A=E, где E— единичная матрица. Следовательно (4) можно записать так:
Ex=A −1 b. | (4) |
или, учитывая, что Ex=x:
x=A −1 b. | (5) |
Таким образом, для решения системы линейных уравнений (1) (или (2)), достаточно умножить обратную к A матрицу на вектор ограничений b.
Примеры решения системы линейных уравнений матричным методом
Пример 1. Решить следующую систему линейных уравнений матричным методом:
Матричный вид записи системы линейных уравнений: Ax=b, где
Найдем обратную к матрице A методом Жордана-Гаусса. С правой стороны матрицы A запишем единичную матрицу:
Выбираем самый большой по модулю ведущий элемент столбца 1. Для этого заменяем местами строки 1 и 2:
Исключим элементы 1-го столбца матрицы ниже главной диагонали. Для этого сложим строки 2,3 со строкой 1, умноженной на -1/3,-1/3 соответственно:
Выбираем самый большой по модулю ведущий элемент столбца 2. Для этого заменяем местами строки 2 и 3:
Исключим элементы 2-го столбца матрицы ниже главной диагонали. Для этого сложим строку 3 со строкой 2, умноженной на -24/51:
Исключим элементы 3-го столбца матрицы выше главной диагонали. Для этого сложим строки 1, 2 со строкой 3, умноженной на 17/53, 85/159 соответственно:
Исключим элементы 2-го столбца матрицы выше главной диагонали. Для этого сложим строку 1 со строкой 2, умноженной на -3/17:
Делим каждую строку матрицы на ведущий элемент соответствующей строки:
Отделяем правую часть матрицы. Полученная матрица является обратной матрицей к A :
Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A−1b. Тогда
Пример 2. Решить следующую систему линейных уравнений матричным методом:
Матричный вид записи системы линейных уравнений: Ax=b, где
Найдем обратную к матрице A методом алгебраических дополнений. Вычислим определитель матрицы A :
Вычислим все алгебраические дополнения матрицы A:
Обратная матрица вычисляется из следующего выражения:
где Aij − алгебраическое дополнение элемента матрицы A, находящиеся на пересечении i-ой строки и j-ого столбца, а Δ − определитель матрицы A.
Используя формулу обратной матрицы, получим:
Обратная матрица найдена. Решение системы линейных уравнений имеет вид x=A −1 b. Тогда
Источник
Онлайн калькулятор. Решение систем линейных уравнений. Матричный метод. Метод обратной матрицы.
Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) матричным методом (методом обратной матрицы), вы сможете очень просто и быстро найти решение системы.
Воспользовавшись онлайн калькулятором для решения систем линейных уравнений матричным методом (методом обратной матрицы), вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.
Решить систему линейных уравнений матричным методом
Изменить названия переменных в системе
Заполните систему линейных уравнений:
Ввод данных в калькулятор для решения систем линейных уравнений матричным методом
- В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
- Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа.
- Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
- Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.
Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2
будет вводится в калькулятор следующим образом:
Дополнительные возможности калькулятора для решения систем линейных уравнений матричным методом
- Между полями для ввода можно перемещаться нажимая клавиши «влево», «вправо», «вверх» и «вниз» на клавиатуре.
- Вместо x 1, x 2, . вы можете ввести свои названия переменных.
Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.
Источник
Средствами матричного исчисления
По формулам Крамера;
Методом Гаусса;
Решение: Теорема Кронекера-Капелли. Система совместна тогда и только тогда, когда ранг матрицы этой системы равен рангу ее расширенной матрицы, т. е. r(A)=r(A1), где
,
.
Расширенная матрица системы имеет вид:
.
Умножим первую строку на (–3),а вторую на (2); прибавим после этого элементы первой строки к соответствующим элементам второй строки; вычтем из второй строки третью. В полученной матрице первую строку оставляем без изменений.
Разделим элементы третьей строки на (6) и поменяем местами вторую и третью строки:
Умножим вторую строку на (–11) и прибавим к соответствующим элементам третьей строки.
Разделим элементы третьей строки на (10).
;
.
Найдем определитель матрицы А.
.
Следовательно, r(A)=3. Ранг расширенной матрицы r(A1) так же равен 3, т.е.
1) Исследуя систему на совместность, расширенную матрицу преобразовали по методу Гаусса.
Метод Гаусса состоит в следующем:
1. Приведение матрицы к треугольному виду, т. е. ниже главной диагонали должны находиться нули (прямой ход).
2. Из последнего уравнения находим х3 и подставляем его во второе, находим х2, и зная х3, х2 подставляем их в первое уравнение, находим х1 (обратный ход).
Запишем, преобразованную по методу Гаусса, расширенную матрицу
в виде системы трех уравнений:
Þ х3=1
2) Решим систему по формулам Крамера: если определитель системы уравнений Δ отличен от нуля, то система имеет единственное решение, которое находится по формулам
;
;
.
Вычислим определитель системы Δ:
Т.к. определитель системы отличен от нуля, то согласно правилу Крамера, система имеет единственное решение. Вычислим определители Δ1, Δ2, Δ3. Они получаются из определителя системы Δ заменой соответствующего столбца на столбец свободных коэффициентов.
Находим по формулам неизвестные:
;
;
3) Решим систему средствами матричного исчисления, т. е. при помощи обратной матрицы.
А×Х=В Þ Х=А -1 × В, где А -1 – обратная матрица к А,
— столбец свободных членов,
— матрица-столбец неизвестных.
Обратная матрица считается по формуле:
(*)
где D — определитель матрицы А, Аij – алгебраические дополнения элемента аij матрицы А. D = 60 (из предыдущего пункта). Определитель отличен от нуля, следовательно, матрица А обратима, и обратную к ней матрицу можно найти по формуле (*). Найдем алгебраические дополнения для всех элементов матрицы А по формуле:
Запишем обратную матрицу.
.
Сделаем проверку по формуле: А -1 × А=Е.
Вывод: так как произведение А -1 × А дает единичную матрицу, то обратная матрица А -1 найдена верно и решение системы определяется по формуле Х=А -1 ×В.
.
Проверка. Подставим полученные значения в систему. Получим:
Т. к. неизвестные х1 , х2, х3 обратили каждое уравнение в тождество, то они найдены верно.
Пример 6. Решить систему методом Гаусса и найти какие-нибудь два базисных решения системы.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Источник