Реши задачу найди разные способы решения

Решение задач разными способами – средство повышения интереса к математике.
методическая разработка по математике (1 класс) по теме

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Скачать:

Вложение Размер
Решение задач разными способами 28.24 КБ

Предварительный просмотр:

Войнова Светлана Юрьевна, учитель начальных классов,

МОУ «СОШ №56 с углубленным изучением отдельных предметов»

Решение задач разными способами – средство повышения интереса к математике.

Люди научились считать 25-30 тысяч лет тому назад. О значении математики как предмета школьного преподавания М.В.Ломоносов в записке о преподавании физики, химии и математики пишет так:

«А математику уже затем учить следует, что она ум в порядок приводит».

Среди всех мотивов учебной деятельности самым действенным является познавательный интерес, возникающий в процессе обучения. Он не только активизирует умственную деятельность в данный момент, но и направляет ее к последующему решению различных задач.

Устойчивый познавательный интерес формируется разными средствами. Одним из них является решение задач разными способами.

Большие возможности для развития интереса учащихся к математике имеют задачи и их решения разными способами. Для кого из ребят интересна математика? Да математику любят в основном те ученики, которые умеют решать задачи, научив их решать задачи разными способами, мы окажем существенное влияние на их интерес к предмету, на развитие мышления и речи.

Однако в практике обучения математике различные способы решения ещё не заняли достойного места. Причин этому много, и в частности, недостаточная ориентация на эту работу в учебниках, методических пособиях для учителей. Учитель поэтому зачастую не владеет теми приёмами, с помощью которых можно отыскать другие способы решения. А без этого невозможно и детей научить находить разные способы решения, трудно использовать эти способы решения для других целей обучения и воспитания.

В начальном курсе математики текстовые задачи могут быть решены различными способами : алгебраическим, практическим, графическим, табличным, схематическим, комбинированным.

Рассмотрим различные способы решения текстовых задач на конкретных примерах.

Начальный курс математики ставит своей основной целью научить младших школьников решать задачи арифметическим способом, который сводится к выбору арифметических действий, моделирующих связи между данными и искомыми величинами. Решение задач оформляется в виде последовательности числовых равенств, к которым даются пояснения, или числовым выражением.

Задача. «Утром ушли в море 20 маленьких и 8 больших рыбачьих лодок, 6 лодок вернулись. Сколько лодок с рыбаками должно вернуться?»

I способ. 1. 20+8=28(л.) ушли в море.

2. 28-6=14(л.) должны вернуться.

II способ. 1. Сколько больших лодок должно вернуться? 20-6=14(л.)

2. Сколько всего лодок должно вернуться? 14+8=22(л.)

III способ. 1. Сколько маленьких лодок должно вернуться? 8-6=2(л.)

2.Сколько всего лодок должно вернуться? 20+2=22(л.)

Ответ: должно ещё вернуться 22 лодки. Задача решена различными арифметическими способами.

Если у учащихся нет навыков решения задач различными арифметическими способами или вызывает затруднение их нахождение, можно предложить следующие методические приёмы:

1. разъяснение плана решения задачи;

2. пояснение готовых способов решения;

3. соотнесение пояснения с решением;

4. продолжение начатых вариантов решения;

5. нахождение «ложного» варианта решения из числа предложенных.

Текстовые задачи решаются либо синтетическим методом (вычисления в прямом порядке, от числовых данных условия к числовым результатам, о которых спрашивается в задаче), либо аналитическим (вычисления в обратном порядке с рассуждениями, идущими от вопроса задачи). Примерами этих последних являются задачи о «задуманном числе», а также задачи на части. Естественным оформлением решения таких задач служит составление уравнения – алгебраический метод. Он состоит из следующих шагов: 1.Введение неизвестного. 2.Выражение через это неизвестное величин, о которых говорится в задаче. 3.Составление уравнения. 4.Решение уравнения. 5.Осмысление результата и формулирование ответа.

Задача: «У Иры втрое больше наклеек, чем у Кати, а у Кати на 20 наклеек меньше, чем у Иры. Сколько наклеек у Кати?».

Вначале составим схему уравнения, содержащую не только математические знаки, но и естественные слова.

( Ирины наклейки) – (Катины наклейки) = 20 наклеек.

Получилась вспомогательная модель задачи – частичный перевод текста на математический язык. Введём неизвестное. Пусть х – число Катиных наклеек. Тогда число наклеек у Иры равно х 3.

Составим уравнение х * 3 – х = 20

Ответ: у Кати 10 наклеек.

При обучении алгебраическому методу решения текстовых задач полезно дополнить схему решения самым первым шагом – составлением схемы уравнения, в которую включаются как математические символы, так и нематематические записи и даже рисунки.

Это способ решения задачи с помощью чертежа.

Задача: «Рыбак поймал 10 рыб. Из них 3 леща, 4 окуня, остальные щуки. Сколько щук поймал рыбак?»

лещи окуни щуки

Этот способ, так же как и практический, позволяет ответить на вопрос задачи, не выполняя арифметических действий.

Построение чертежа помогает найти другой арифметический способ решения задачи.

Задача: «На одной машине увезли 28 мешков зерна, на другой на 6 мешков больше, чем на первой, а на третьей на 4 мешка меньше, чем на второй. Сколько мешков зерна увезли на третьей машине?»

I способ. 1. 28+6=34 (мешка) – увезли на второй машине.

2. 34-4=30 (мешка)- увезли на третьей машине.

Ответ : на третьей машине увезли 30 мешков зерна.

Если же мы построим чертеж к этой задачи, то легко найдем другой арифметический способ решения.

  1. На сколько больше мешков увезли на третьей машине, чем на первой? 6-4=2(мешка)
  2. Сколько мешков увезли на третьей машине? 28+2=30 (мешков)

Ответ: на третьей машине увезли 30 мешков зерна.

Из приведенных примеров следует вывод: графическое оформление задачи может определить ход мыслительного процесса и является средством выявления различных способов решения одних и тех же задач. При этом легче усматриваются разные логические основы, содержащиеся в условии задачи; такие способы определяются анализом наглядного сопровождения задачи, на которые учащиеся направляются постановкой учителем соответствующих заданий.

Задача: «В 6 банок поровну разложили 12 кг варенья. Сколько надо таких же банок, чтобы разложить 24 кг варенья?»

В данном случае логическая основа задачи проявляется на двух уровнях – открытом и скрытом, т. е. здесь две логические основы. В первом случае направление мыслительного процесса определяется вопросами:

  1. Сколько кг варенья помещается в одну банку? 12:6=2(кг)
  2. Сколько банок потребуется для 24 кг варенья? 24:2=12(б.)

Во втором случае ход того же процесса определяется другими вопросами:

1.Во сколько раз больше стало варенья? 24:12=2(раза)

Если варенья стало в два раза больше, значит, и банок потребуется в два раза больше.

2.Сколько потребуется банок? 6 * 2=12(б.)

Ответ: потребуется 12 банок.

При решении некоторых задач хорошим подспорьем является табличная форма.

Задача: «У Саши в коллекции 8 жуков и пауков. У всех насекомых 54 ноги. У одного жука 6 ног, а у одного паука – 8ног. Сколько жуков и сколько пауков у Саши в коллекции?»

Источник

Конспект урока по математике на тему «Запись решения задач разными способами». 2 класс.

Тема: «Решение задач разными способами». 2 класс. Составитель: Миколенко С.В. МБОУ «СОШ № 50» г. Белгород

Тип урока: урок открытия новых знаний

Цель: создать условия для развития умений решать задачи разными способами; формировать умение использовать различные формы записи условия задач, влияющих на ход решения.

Предметные: научатся решать задачи разными способами; сформировать умение использовать различные формы записи условия задач, влияющих на ход решения.

Метапредметные: Познавательные: научатся находить способ решения учебной задачи и выполнять учебные действия в устной и письменной форме, использовать математические термины, символы и знаки. Регулятивные : принимают и сохраняют учебную задачу; планируют свои действия в соответствии с поставленной задачей и условиями её реализации. Коммуникативные: научатся сотрудничать со сверстниками и учителем; способствовать осуществлению взаимодействия ребенка с соседом по парте.

Личностные: проявляют положительное отношение к школе и учебной деятельности; имеют представление о причинах успеха в учёбе; выражают этические чувства на основе анализа простых ситуаций.

Материально-техническое обеспечение: учебник Математика 2 класс- 31 шт., тетради-31 шт., карточки- 31 шт,

Деятельность учителя и ученика

Организационный этап. Здравствуйте, ребята. Посмотрите на своего соседа по парте, подарите ему свою улыбку. Девиз нашего урока «Прежде чем решать задачу – прочитай условие» Жак Адамар

Актуализация знаний. Сейчас мы с вами закрепим знания предыдущего урока. Посчитаем примеры:

76-20 = 56 47-18 = 29 54-30 = 24 67-20=57

82 — 28= 76 — 39= 38- 19= 100- 43=

-Посчитайте, сколько треугольников содержится в рисунке.

Постановка цели и задач урока

Постановка цели и задач урока 1) -Решим с вами устно задачу.(фронтальная работа) Задача: У Вали было 90 рублей. Она купила ручку за 45 рублей и закладку за 18 рублей. Сколько денег у Вали осталось? Учитель: — Что известно в задаче?

1 способ: 1)45+18= 63 (р.) — стоит ручка и закладка.

2)90-63=27 (р.) – осталось

Ответ: у Вали осталось 27 рублей.

Учитель: -Можем ли мы по-другому решить эту задачу? (Да)

1)90-45=45(р.)- осталось после покупки ручки.

Ответ: у Вали осталось 27 рублей.

-Сколькими способами мы решали эти задачи?

-Как мы можем назвать решение этих задач? (решение задач разными способами)

-Как вы думаете, какая тема нашего урока?

Тема: «Решение задач разными способами». ( на доске )

-Каковы задачи нашего урока?

научиться…. повторить… закрепить….

Первичное усвоение новых знаний.

Первичное усвоение новых знаний .

1)Работа с учебником с.76, № 10 -Откройте учебник на странице 76. Прочитаем задачу №10. О чем говорится в задаче? Какой вопрос задачи? — Выделим слова для краткой записи.

Витя- 50 коп.

Таня- 10 коп. и 5 коп.

1) 10+5= 15 (коп.)- у Тани.

2) 50 + 15= 65 (коп.)

Ответ: 65 копеек у обоих детей.

Учитель: — Сколько копеек может быть у Вити. Если Таня даст ему одну из своих монет?

1) 50+ 5= 55( коп.)-может быть у Вити.

2) 50+10= 60 ( коп.)-может быть у Вити.

Поднимает руки класс – это «раз»,

Повернулась голова – это «два»,

Руки вниз, вперед смотри – это «три»,

Руки в стороны по шире развернули на «четыре».

С силой их к плечам прижать – это «пять», всем ребятам надо сесть – это «шесть».

2 )Работа с учебником с.79, № 21 ( 1 и 2 столбик)

3) Выполним задание по рядам карточка (по рядам).

20 + (36 – 40)= 90- (80 — 69)= 75+ (45 -19) =

(40 + 50) — 67= 70 — (32 — 8) = 83+ (37 — 19) =

Первичная проверка понимания

Первичная проверка понимания. ( Поработаем в группах). (на каждую группу задача, которую можно решить двумя способами) 1 группа

1)В одной бочке было 20 вёдер воды, а в другой – 15 вёдер. Для полива взяли 5 вёдер воды. Сколько вёдер воды осталось в бочках?

1)20-5=15(в.)-осталось в 1 бочке, после того,как взяли

Ответ: осталось 30 вёдер.

2)В кувшине было 12 стаканов молока. На кашу пошло 5 стаканов молока, а на омлет – 2 стакана. Сколько стаканов молока осталось в кувшине?

1)5+2=7(ст.)-ушло на кашу и омлет

1)12-5=7(ст.)-осталось после того, как взяли на кашу

Ответ:5 стаканов осталось.

3)На двух полках было 47 книг. С первой взяли 9 книг, а со второй – 7 книг. Сколько книг осталось на полках?

1)9+7=16(кн.)-взяли с двух полок

2)47-16=31(кн.)-осталось на полках

1)47-9=38(кн.)-осталось, после того, как взяли с 1 полки

2)38-7=31(кн.)-осталось на полках

4)В троллейбусе ехали 47 пассажиров. На остановке 12 пассажиров вышли и 15 вошли. Сколько стало пассажиров в троллейбусе?

1)47-12=35(п.)-осталось в троллейбусе

2)35+15=50(п.) – стало в троллейбусе

(47-12)+15=50(п.)-стало в троллейбусе

Ответ:50 пассажиров стало в троллейбусе.

5)В школьную столовую привезли 35 кг помидоров и 15 кг огурцов. На завтрак ученикам раздали 16 кг овощей. Сколько кг овощей осталось?

6)У Феди в аквариуме было 23 рыбки. Мальчик подарил 6 рыбок Ване и 4 рыбки Максиму. Сколько рыбок осталось в аквариуме у Феди?

1)6+4=10(р.)-Максим подарил всего

1)23-6=17(р.)-осталось, после того, как подарил Ване

Выполнить № 25, с.80; № 21 (3 столбик), с.79.

-Давайте подведем итог нашего урока. Какие цели мы ставили на наш урок?

-Как вы думаете, достигли ли мы их?

– Как вы оцените свою работу на уроке?

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Решение задач разными способами: способы решения задач в начальной школе, решение задач 2 способами 2 класс

Школьникам проще справиться с примерами на умножение или деление, чем найти ответ в задаче, требующей определенных математических навыков. Учебники по математике для второклассников включают ряд текстовых задач, которые решаются разными способами. Такие задания развивают у детей навыки логического и абстрактного мышления, а также помогают укрепить их способности в решении задач.
Перед вами способы, которые помогут с легкостью решить любую математическую задачу.

Способы решения задач в начальной школе

Школьники часто теряются, когда сталкиваются с решением текстовых задач. Им нужно научиться анализировать информацию и находить полезные инструменты для выполнения заданий.
Особенность текстовых задач в том, что в них прямо не указывается, какое именно действие (или действия) нужно выполнить для нахождения ответа.
Различают несколько способов решения задач – алгебраический, арифметический и графический.

  • Первый способ подразумевает ряд арифметических действий над числами.
  • Алгебраический — нахождение ответа через х, т.е. решение через уравнение.
  • В результате применения графического метода искомые значения величин находятся с помощью геометрических образов: отрезков прямой, прямоугольников, квадратов и т.д.

графический способ решения задач: чертёж

Не существует наиболее рационального способа решения, т.к. все варианты в итоге имеют одинаковый ответ.

Петерсон решение задач

Решение задач несколькими способами

На дереве сидело 7 голубей и 5 ласточек. 4 птицы улетели. Сколько птиц осталось?

графический способ решения задачи

графический

В первом ряду изображены голуби, в нижнем — ласточки. Если 4 голубя улетели (их зачеркнули), осталось всего 8 символов.

Ответ: 8 птиц осталось сидеть на дереве.

арифметический способ решения задачи

арифметический
Если улетели ласточки, узнаем, сколько птиц осталось.
5-4 = 1 (ласт.)
К голубям добавим 1 ласточку.
7 + 1 = 8 (пт.)

арифметический 2-й вариант

Если дерево покинули голуби, узнаем, сколько птиц осталось сидеть.
7-4 = 3 (гол.) — осталось
Сложим оставшееся количество голубей и ласточек.
3 + 5 = 8 (пт.)

Ответ: 8 птиц осталось сидеть на дереве.

Решение задач разными способами: 2 класс

Задача 1

В автобусе ехало 16 пассажиров. 5 пассажиров вышло на первой остановке, на второй салон покинуло еще 3 человека. Сколько пассажиров осталось в автобусе?

1 вариант решения арифметический

  1. Узнаем общее количество вышедших пассажиров.
  2. Сколько пассажиров осталось в автобусе?

5 + 3 = 8 (п.) — всего пассажиров вышло на остановках

16 — 8 = 8 (п.) — пассажиров осталось в автобусе

Ответ: 8 пассажиров осталось в автобусе

2 вариант графический

Зеленым цветом помечено количество вышедших пассажиров, красным — количество оставшихся. Подсчитаем деления на красном конце и получим 8 человек.

Ответ: 8 пассажиров осталось в автобусе

Важно! Решение задачи несколькими способами является проверкой правильности. Одинаковые ответы указывают на правильность решения.

Задача 2

Маляру нужно покрасить 15 окон. К обеду он покрасил 5 окон, после обеда — 3. Сколько окон осталось ему покрасить?

1 вариант решения арифметический

  1. Узнаем общее количество окрашенных окон.
  2. Узнаем количество неокрашенных окон.

5 + 3 = 8 (ок.) — всего окон покрасил маляр

15-8 = 7 (ок.) — окон осталось покрасить

Ответ: маляру осталось покрасить 7 окон

2 вариант решения арифметический

  1. Сколько окон нужно было покрасить после обеда?
  2. Сколько окон осталось покрасить ?

15-5 = 10 (ок.) — окон нужно было покрасить после обеда

10-3 = 7 (ок.) — окон осталось покрасить

Ответ: маляру осталось покрасить 7 окон

Задача 3

Маша купила в магазине несколько ручек. 4 штуки она подарила подруге, после чего у нее осталось 8 ручек. Сколько ручек купила Маша?

1 вариант решения алгебраический

Пускай Маша купила х ручек, 4 она подарила и 8 штук осталось. Имеем уравнение
Х — 4 = 8
Х =8+4
Х =12 (р.) купила всего

Ответ: Маша купила 12 ручек

2 вариант решения арифметический

Общее количество ручек находим из сложения подаренных и оставшихся ручек.
8+4 = 12 (шт.)

Ответ: Маша купила 12 ручек

Задача 4

В веревочном парке Максим до обеда преодолел 6 воздушных троп. А после отдыха он поднялся на 3 столба и одолел 5 подвесных мостов. Сколько всего препятствий покорил Максим?

1 вариант арифметический

Найдем общее количество преград, преодоленных Максимом после обеда.
3 + 5 = 8 (п.) — преодолел;
Сложим преодоленные преграды до отдыха и после отдыха.
6 + 8 = 14 (п.) — всего.

Ответ: Максим преодолел 14 преград

2 вариант арифметический

Найдем количество преград после восхождения мальчика на столбы.
6+3 = 9 (п.)
Всего, после того как преодолел подвесные мосты.
9+5=14 (п.)

Ответ: Максим преодолел 14 преград

Задача 5

У Ирины было 20 красных и 40 синих бусин. Она использовала 30 бусин. Сколько бусин осталось у девочки?

1 вариант арифметический

  1. Сколько всего было бусин у девочки?
  2. Сколько бусин осталось?

20 + 40 = 60 (в.) — всего бусин было у девочки
60-30 = 30 (б.) — бусин осталось у девочки

Ответ: у Ирины осталось 30 бусин

2 вариант решения арифметический

Поскольку в задаче не указано, какого цвета бусины использовала девочка, предположим, что девочка использовала синие бусины, тогда

  1. Сколько синих бусин осталось у девочки?
  2. Сколько бусин осталось у девочки?

40-30 = 10 (б.) — синих бусин осталось у девочки
20 + 10 = 30 (б.) — бусин осталось у девочки

Ответ: у девочки осталось 30 бусин

Текстовые математические задачи непростые, но, вникая в их суть и регулярно практикуясь, школьник постепенно укрепляет свои навыки. А поверить правильность ответа можно с помощью разных способов решения.

Источник

Читайте также:  Прививка плодовых деревьев для начинающих лучшие способы
Оцените статью
Разные способы