Реши систему линейных уравнений графическим способом

Содержание
  1. Реши систему линейных уравнений графическим способом
  2. Графический метод
  3. Пример 1
  4. Пример 2
  5. Пример 3
  6. Пример 4
  7. Пример 5
  8. Видео YouTube
  9. Алгебра. 9 класс
  10. Математика
  11. Тестирование онлайн
  12. Система линейных уравнений
  13. Решение системы линейных уравнений способом подстановки
  14. Решение системы линейных уравнений способом сложения
  15. Решение системы линейных уравнений графическим способом
  16. Метод введения новых переменных
  17. Особые случаи
  18. Метод Гаусса*
  19. Системы линейных уравнений (7 класс)
  20. Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.
  21. Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.
  22. Как решить систему линейных уравнений?

Реши систему линейных уравнений графическим способом

Другими словами, если задано несколько уравнений с одной, двумя или больше неизвестными, и все эти уравнения (равенства) должны одновременно выполняться , такую группу уравнений мы называем системой.

Объединяем уравнения в систему с помощью фигурной скобки:

Графический метод

Недаром ответ записывается так же, как координаты какой-нибудь точки.

Ведь если построить графики для каждого уравнения в одной системе координат, решениями системы уравнений будут точки пересечения графиков.

Например, построим графики уравнений из предыдущего примера.

Пример 1

Для этого сперва выразим y y y в каждом уравнении, чтобы получить функцию (ведь мы привыкли строить функции относительно x x x ):

Для того чтобы графически решить систему уравнений с двумя переменными нужно:

1) построить графики уравнений в одной системе координат;
2) найти координаты точек пересечения этих графиков (координаты точек пересечения графиков и есть решения системы);

Разберем это задание на примере.

Решить графически систему линейных уравнений.

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Пример 2

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может:

а) иметь единственное решение;

б) не иметь решений;

в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Пример 3

Графическое решение системы

Пример 4

Решить графическим способом систему уравнений.

Графиком каждого уравнения служит прямая линия, для построения которой достаточно знать координаты двух точек. Мы составили таблицы значений х и у для каждого из уравнений системы.

Прямую y=2x-3 провели через точки (0; -3) и (2; 1).

Прямую y=x+1 провели через точки (0; 1) и (2; 3).

Графики данных уравнений системы 1) пересекаются в точке А(4; 5). Это и есть единственное решение данной системы.

Пример 5

Выражаем у через х из каждого уравнения системы 2), а затем составим таблицу значений переменных х и у для каждого из полученных уравнений.

Прямую y=2x+9 проводим через точки (0; 9) и (-3; 3). Прямую y=-1,5x+2 проводим через точки (0; 2) и (2; -1).

Наши прямые пересеклись в точке В(-2; 5).

ОБЯЗАТЕЛЬНО: Познакомимся с видео, где нам объяснят как решаются системы линейных уравнений графическим способом. РАССКАЖУТ, КАК РЕШАТЬ СИСТЕМЫ ГРАФИЧЕСКИ.

Читайте также:  Существительные образованные бессуфиксальным способом

Видео YouTube

Источник

Алгебра. 9 класс

Вспомним основные понятия.

Решение уравнения с двумя переменными – это пара значений переменных, которая обращает это уравнение в верное равенство.

Решение системы уравнений с двумя переменными – это пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – это значит найти все её решения, или убедиться, что общих решений у исходных уравнений нет.

Чтобы решить систему уравнений графическим способом нужно построить графики уравнений, входящих в систему, на одной координатной плоскости и найти точки их пересечения.

Вспомним основные виды графиков.

y = kx + b, где k и b – некоторые числа

, где a, b, c и d – некоторые числа, с ≠ 0, adbc ≠ 0

, где n – некоторое чётное число

, где n – некоторое нечётное число

y = x n , где n – некоторое чётное число

y = x n , где n – некоторое нечётное число

Решим несколько задач.

Решите графическим способом систему уравнений

Приведём уравнения к виду, удобному для построения графиков.

Сначала первое уравнение:
x 2 + y 2 = 5 + 2x + 4y;
x 2 – 2x + 1 – 1 + y 2 – 4y + 4 – 4 = 5;
(x – 1) 2 + (y – 2) 2 – 5 = 5;
(x – 1) 2 + (y – 2) 2 = 10.

Теперь второе уравнение:
2x = y – 5;
y = 2x + 5.

Теперь построим графики уравнений на одной координатной плоскости.

Используя чертёж найдем координаты точек пересечения графиков. Получим две точки: А(0; 5) и B(–2; 1).

Подставим найденные значения переменных, чтобы убедиться, что мы нашли точные, а не приближённые решения системы.

Определите, сколько решений может иметь система уравнений в зависимости от значений b

Графиком первого уравнения системы является парабола с вершиной в точке (0; –3).

Графиком второго уравнения системы является окружность с центром в точке (0; 0) и радиусом b.

Построим в одной системе координат график первого уравнения и возможные варианты графика второго уравнения, начиная с маленького радиуса окружности и постепенно его увеличивая.

Таким образом, в зависимости от значения b система может не иметь решений, может имеет 2, 3 или 4 решения.

Источник

Математика

Тестирование онлайн

Система линейных уравнений

Обычно уравнения системы записывают в столбик одно под другим и объединяют фигурной скобкой

Система уравнений такого вида, где a, b, c — числа, а x, y — переменные, называется системой линейных уравнений.

При решении системы уравнений используют свойства, справедливые для решения уравнений.

Решение системы линейных уравнений способом подстановки

Рассмотрим пример

1) Выразить в одном из уравнений переменную. Например, выразим y в первом уравнении, получим систему:

2) Подставляем во второе уравнение системы вместо y выражение 3х-7:

3) Решаем полученное второе уравнение:

4) Полученное решение подставляем в первое уравнение системы:

Система уравнений имеет единственное решение: пару чисел x=1, y=-4. Ответ: (1; -4), записывается в скобках, на первой позиции значение x, на второй — y.

Решение системы линейных уравнений способом сложения

Решим систему уравнений из предыдущего примера методом сложения.

1) Преобразовать систему таким образом, чтобы коэффициенты при одной из переменных стали противоположными. Умножим первое уравнение системы на «3».

Читайте также:  Как получить гражданство сша все способов

2) Складываем почленно уравнения системы. Второе уравнение системы (любое) переписываем без изменений.

3) Полученное решение подставляем в первое уравнение системы:

Решение системы линейных уравнений графическим способом

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может: а) иметь единственное решение; б) не иметь решений; в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Графическое решение системы

Метод введения новых переменных

Замена переменных может привести к решению более простой системы уравнений, чем исходная.

Рассмотрим решение системы

Введем замену , тогда

Переходим к первоначальным переменным

Особые случаи

Не решая системы линейных уравнений, можно определить число ее решений по коэффициентам при соответствующих переменных.

Пусть дана система

1) Если , то система имеет единственное решение.

2) Если , то система решений не имеет. В этом случае прямые, являющиеся графиками уравнений системы, параллельны и не совпадают.

3) Если , то система имеет бесконечное множество решений. В этом случае прямые совпадают друг с другом.

Метод Гаусса*

Суть метода в последовательном исключении неизвестных, приводя систему линейных уравнений к ступенчатой форме.

Источник

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений \(x=3\);\(y=-1\) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо \(x\) и \(y\), оба уравнения превратятся в верные равенства \(\begin3-2\cdot (-1)=5 \\3 \cdot 3+2 \cdot (-1)=7 \end\)

А вот \(x=1\); \(y=-2\) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» \(\begin1-2\cdot(-2)=5 \\3\cdot1+2\cdot(-2)≠7 \end\)

Отметим, что такие пары часто записывают короче: вместо «\(x=3\); \(y=-1\)» пишут так: \((3;-1)\).

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел \((x_0;y_0)\)

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Читайте также:  Способы обращения по фамилии

Способ алгебраического сложения.

Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:\(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\).

Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, (\(3\) и \(3\)) или противоположны по значению (например, \(5\) и \(-5\)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на \(2\), а второе — на \(3\).

\(\begin2x+3y=13 |\cdot 2\\ 5x+2y=5 |\cdot 3\end\)\(\Leftrightarrow\)\(\begin4x+6y=26\\15x+6y=15\end\)\(\Leftrightarrow\)

Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

Найдите неизвестное из полученного уравнения.

Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

Ответ запишите парой чисел \((x_0;y_0)\).

Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

Пример. Решите систему уравнений: \(\begin12x-7y=2\\5y=4x-6\end\)

Приводим систему к виду \(\begina_1 x+b_1 y=c_1\\a_2 x+b_2 y=c_2\end\) преобразовывая второе уравнение.

«Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на \(3\).

Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

Делим уравнение на \(8\), чтобы найти \(y\).

Игрек нашли. Теперь найдем \(x\), подставив вместо игрека \(-2\) в любое из уравнений системы.

Икс тоже найден. Пишем ответ.

Приведите каждое уравнение к виду линейной функции \(y=kx+b\).

Постройте графики этих функций. Как? Можете прочитать здесь .

  • Найдите координаты \((x;y)\) точки пересечения графиков и запишите их в ответ в виде \((x_0;y_0 )\).
    Ответ: \((4;2)\)
  • Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений \(x_0\) и \(y_0\) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему \(\begin3x-8=2y\\x+y=6\end\), мы получили ответ \((4;2)\). Проверим его, подставив вместо икса \(4\), а вместо игрека \(2\).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: \(\begin3(5x+3y)-6=2x+11\\4x-15=11-2(4x-y)\end\)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на \(2\).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим \(6x-13\) вместо \(y\) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем \(117\) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на \(67\).

    Ура, мы нашли \(x\)! Подставим его значение во второе уравнение и найдем \(y\).

    Источник

    Оцените статью
    Разные способы