Еще раз о поиске простых чисел
В заметке обсуждаются алгоритмы решета для поиска простых чисел. Мы подробно рассмотрим классическое решето Эратосфена, особенности его реализации на популярных языках программирования, параллелизацию и оптимизацию, а затем опишем более современное и быстрое решето Аткина. Если материал о решете Эратосфена предназначен в первую очередь уберечь новичков от регулярного хождения по граблям, то алгоритм решета Аткина ранее на Хабрахабре не описывался.
На снимке — скульптура абстрактного экспрессиониста Марка Ди Суверо «Решето Эратосфена», установленная в кампусе Стэнфорского университета
Введение
Напомним, что число называется простым, если оно имеет ровно два различных делителя: единицу и самого себя. Числа, имеющие большее число делителей, называются составными. Таким образом, если мы умеем раскладывать числа на множители, то мы умеем и проверять числа на простоту. Например, как-то так:
(Здесь и далее, если не оговорено иное, приводится JavaScript-подобный псевдокод)
Время работы такого теста, очевидно, есть O(n ½ ), т. е. растет экспоненциально относительно битовой длины n. Этот тест называется проверкой перебором делителей.
Довольно неожиданно, что существует ряд способов проверить простоту числа, не находя его делителей. Если полиномиальный алгоритм разложения на множители пока остается недостижимой мечтой (на чем и основана стойкость шифрования RSA), то разработанный в 2004 году тест на простоту AKS [1] отрабатывает за полиномиальное время. С различными эффективными тестами на простоту можно ознакомиться по [2].
Если теперь нам нужно найти все простые на достаточно широком интервале, то первым побуждением, наверное, будет протестировать каждое число из интервала индивидуально. К счастью, если у нас достаточно памяти, можно использовать более быстрые (и простые) алгоритмы решета. В этой статье мы обсудим два из них: классическое решето Эратосфена, известное еще древним грекам, и решето Аткина, наиболее совершенный современный алгоритм этого семейства.
Решето Эратосфена
Древнегреческий математик Эратосфен предложил следующий алгоритм для нахождения всех простых, не превосходящих данного числа n. Возьмем массив S длины n и заполним его единицами (пометим как невычеркнутые). Теперь будем последовательно просматривать элементы S[k], начиная с k = 2. Если S[k] = 1, то заполним нулями (вычеркнем или высеем) все последующие ячейки, номера которых кратны k. В результате получим массив, в котором ячейки содержат 1 тогда и только тогда, когда номер ячейки — простое число.
Много времени можно сэкономить, если заметить, что, поскольку у составного числа, меньшего n, по крайней мере один из делителей не превосходит , процесс высевания достаточно закончить на . Вот анимация решета Эратосфена, взятая с Википедии:
Еще немного операций можно сэкономить, если — по той же причине — начинать вычеркивать кратные k, начиная не с 2k, а с номера k 2 .
Реализация примет следующий вид:
Эффективность решета Эратосфена вызвана крайней простотой внутреннего цикла: он не содержит условных переходов, а также «тяжелых» операций вроде деления и умножения.
Оценим сложность алгоритма. Первое вычеркивание требует n/2 действий, второе — n/3, третье — n/5 и т. д. По формуле Мертенса
так что для решета Эратосфена потребуется O(n log log n) операций. Потребление памяти же составит O(n).
Оптимизация и параллелизация
Первую оптимизацию решета предложил сам Эратосфен: раз из всех четных чисел простым является только 2, то давайте сэкономим половину памяти и времени и будем выписывать и высеивать только нечетные числа. Реализация такой модификации алгоритма потребует лишь косметических изменений (код).
Более развитая оптимизация (т. н. wheel factorization) опирается на то, что все простые, кроме 2, 3 и 5, лежат в одной из восьми следующих арифметических прогрессий: 30k+1, 30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23 и 30k+29. Чтобы найти все простые числа до n, вычислим предварительно (опять же при помощи решета) все простые до . Теперь составим восемь решет, в каждое из которых будут входить элементы соответствующей арифметической прогрессии, меньшие n, и высеем каждое из них в отдельном потоке. Все, можно пожинать плоды: мы не только понизили потребление памяти и нагрузку на процессор (в четыре раза по сравнению с базовым алгоритмом), но и распараллелили работу алгоритма.
Наращивая шаг прогрессии и количество решет (например, при шаге прогрессии 210 нам понадобится 48 решет, что сэкономит еще 4% ресурсов) параллельно росту n, удается увеличить скорость алгоритма в log log n раз.
Сегментация
Что же делать, если, несмотря на все наши ухищрения, оперативной памяти не хватает и алгоритм безбожно «свопится»? Можно заменить одно большое решето на последовательность маленьких ситечек и высевать каждое в отдельности. Как и выше, нам придется предварительно подготовить список простых до , что займет O(n ½-ε ) дополнительной памяти. Простые же, найденные в процессе высевание ситечек, нам хранить не нужно — будем сразу отдавать их в выходной поток.
Не надо делать ситечки слишком маленькими, меньше тех же O(n ½-ε ) элементов. Так вы ничего не выиграете в асимптотике потребления памяти, но из-за накладных расходов начнете все сильнее терять в производительности.
Решето Эратосфена и однострочники
На Хабрахабре ранее публиковалась большая подборка алгоритмов Эратосфена в одну строчку на разных языках программирования (однострочники №10). Интересно, что все они на самом деле решетом Эратосфена не являются и реализуют намного более медленные алгоритмы.
Дело в том, что фильтрация множества по условию (например, на Ruby) или использование генераторных списков aka list comprehensions (например, на Haskell) вызывают как раз то, избежать чего призван алгоритм решета, а именно поэлементную проверку делимости. В результате сложность алгоритма возрастает по крайней мере до (это число фильтраций), умноженного на
(минимальное число элементов фильтруемого множества), где
— число простых, не превосходящих n, т. е. до O(n 3/2-ε ) действий.
Однострочник на Scala ближе к алгоритму Эратосфена тем, что избегает проверки на делимость. Однако сложность построения разности множеств пропорциональна размеру большего из них, так что в результате получаются те же O(n 3/2-ε ) операций.
Вообще решето Эратосфена тяжело эффективно реализовать в рамках функциональной парадигмы неизменяемых переменных. В случае, если функциональный язык (например, OСaml) позволяет, стоит нарушить нормы и завести изменяемый массив. В [3] обсуждается, как грамотно реализовать решето Эратосфена на Haskell при помощи техники ленивых вычеркиваний.
Решето Эратосфена и PHP
Запишем алгоритм Эратосфена на PHP. Получится примерно следующее:
Вторая проблема: массивы в PHP ужасны по накладным расходам памяти. У меня на 64-битной системе каждый элемент $S из кода выше съедает по 128 байт. Как обсуждалось выше, необязательно держать сразу все решето в памяти, можно обрабатывать его порционно, но все равно такие расходы дóлжно признать недопустимыми.
Для решения этих проблем достаточно выбрать более подходящий тип данных — строку!
Теперь каждый элемент занимает ровно 1 байт, а время работы уменьшилось примерно втрое. Скрипт для измерения скорости.
Решето Аткина
В 1999 году Аткин и Бернштейн предложили новый метод высеивания составных чисел, получивший название решета Аткина. Он основан на следующей теореме.
Теорема. Пусть n — натуральное число, которое не делится ни на какой полный квадрат. Тогда
- если n представимо в виде 4k+1, то оно просто тогда и только тогда, когда число натуральных решений уравнения 4x 2 +y 2 = n нечетно.
- если n представимо в виде 6k+1, то оно просто тогда и только тогда, когда число натуральных решений уравнения 3x 2 +y 2 = n нечетно.
- если n представимо в виде 12k-1, то оно просто тогда и только тогда, когда число натуральных решений уравнения 3x 2 −y 2 = n, для которых x >y, нечетно.
C доказательством можно ознакомиться в [4].
Из элементарной теории чисел следует, что все простые, большие 3, имеют вид 12k+1 (случай 1), 12k+5 (снова 1), 12k+7 (случай 2) или 12k+11 (случай 3).
Для инициализации алгоритма заполним решето S нулями. Теперь для каждой пары (x, y), где , инкрементируем значения в ячейках S[4x 2 +y 2 ], S[3x 2 +y 2 ], а также, если x > y, то и в S[3x 2 −y 2 ]. В конце вычислений номера ячеек вида 6k±1, содержащие нечетные числа, — это или простые, или делятся на квадраты простых.
В качестве заключительного этапа пройдемся по предположительно простым номерам последовательно и вычеркнем кратные их квадратам.
Из описания видно, что сложность решета Аткина пропорциональна n, а не n log log n как у алгоритма Эратосфена.
Авторская, оптимизированная реализация на Си представлена в виде primegen, упрощенная версия — в Википедии. На Хабрахабре публиковалось решето Аткина на C#.
Как и в решете Эратосфена, при помощи wheel factorization и сегментации, можно снизить асимптотическую сложность в log log n раз, а потребление памяти — до O(n ½+o(1) ).
О логарифме логарифма
На самом деле множитель log log n растет крайне. медленно. Например, log log 10 10000 ≈ 10. Поэтому с практической точки зрения его можно полагать константой, а сложность алгоритма Эратосфена — линейной. Если только поиск простых не является ключевой функцией в вашем проекте, можно использовать базовый вариант решета Эратосфена (разве что сэкономьте на четных числах) и не комплексовать по этому поводу. Однако при поиске простых на больших интервалах (от 2 32 ) игра стоит свеч, оптимизации и решето Аткина могут ощутимо повысить производительность.
P. S. В комментариях напомнили про решето Сундарама. К сожалению, оно является лишь математической диковинкой и всегда уступает либо решетам Эратосфена и Аткина, либо проверке перебором делителей.
Источник
Решето Эратосфена С++
Решето Эратосфена – один из древнейших алгоритмов, позволяющих найти числа, которые называют “простыми”. Т.е. числа, которые могут делиться без остатка только на единицу и на себя. Например число 2. На что из натуральных (целых) чисел можно разделить 2, чтоб не получать остаток? Только на 2 и на 1. Или число 7. То же самое. Без остатка оно делится опять таки только на себя и единицу.
Достаточно простой алгоритм еще до нашей эры придумал хитрый дядько Эратосфен Киренский. Грек по национальности. Математик, астроном, географ. Решето дядьки Эратосфена достаточно популярный алгоритм поиска.
Какого-то особого описания этот алгоритм на самом деле не требует. Он предполагает два цикла прохода по набору чисел. Первый определяет следующее простое число, второй вложенный в него вычеркивает все сложные числа (по определенной формуле) стоящие после этого простого. Надо сразу оговориться, что второй цикл сразу все сложные числа не вычеркивает.
Он вычеркивает следующие числа после простого, которые от этого простого находятся на определенном расстоянии. Расстояние это рассчитывается по формуле: Текущий элемент в квадрате + значение этого элемента.
Например если число 5 простое, то следующее после него, которое стоит вычеркнуть будет равно 5*5 = 10, потом 5*5+5 = 15,потом 5*5+5+5 = 20… и так далее. Вычеркиваются таким образом числа кратные этому найденному простому. Нахождение простого начинается с числа 2. Соответственно вычеркиваются 2*2, 2*2+2, 2*2+2+2…
Хорошая иллюстрация есть на сайте Википедии:
Берем первое простое число 2 (синий кружочек) и вычеркиваем все числа, которые кратны двум (синие крестики). Потом берем простое число 3 (зеленый кружочек) и вычеркиваем все что ему кратно (зеленые крестики) и т.д.
После того, как числа вычеркнуты из списка легко определить следующее простое число – оно будет первое не вычеркнутое после текущего.
Поскольку сам код не очень то и большой, я не буду разбивать его на блоки, там нечего то и конкретизировать. Выглядит он к примеру так:
Источник
Решето Эратосфена
Кому надо — программа «Решето Эратосфена» на C++. Записывает в файл 1 000 000 первых простых чисел за 1/10 секунды (без вывода).
Решето Эратосфена
Подскажите реализацию (код) метода шифрования — решета Эратосфена, пожалуйста.
Решето Эратосфена
Здравствуйте. Реализовал алгоритм «Решето Эратосфена» в виде класса. Взгляните, пожалуйста, и.
Решето Эратосфена
Возможно ли найти простые числа методом решета Эратосфена с помощью вектора за один проход? .
Решето Эратосфена
В решете эратосфена из книги в условии есть непонятная вещь: if (i * 1ll * i 21
Kuzia domovenok, да)
Добавлено через 6 минут
Числа до 1 000 000 000 записывает за 300 секунд. Считает 100 секунд.
‘\n’ вместо endl — и будет счастье.
Добавлено через 28 секунд
Да, и простое число — prime, а не simple.
Актуальна
Добавлено через 31 минуту
Актуальна
Решето Сундарама уступает даже лобовому перебору делителей.
Решето Аткина будет побыстрее кода из поста ТС, но ощутимо медленнее оптимизированного решета Эратосфена.
Актуальна
Добавлено через 3 часа 18 минут
Актуальна
Решето Эратосфена
Простое число — это любое целое число, которое точно делится без остатка только само на себя и на.
Решето Эратосфена
Как можно реализовать? Подскажите плиз
Решето Эратосфена
Написать функция для выполнения алгоритма решить Эратосфена! зарания спасибо.
Решето Эратосфена
В общем задание посчитать количество простых чисел до заданного числа N. Написал такой алгоритм.
Источник