- Решение текстовых задач различными способами
- Ход урока
- 1. Организационный момент.
- 2. Арифметический способ решения задачи.
- 3. Решение задачи с помощью уравнений.
- 4. Решение задачи с помощью системы уравнений.
- 5. Подведение итогов.
- Как решать логические и математические задачи
- Решаем логические задачи
- Основные методы решения логических задач
- Метод последовательных рассуждений
- Метод «с конца»
- Решение логических задач с помощью таблиц истинности
- Метод блок-схем
Решение текстовых задач различными способами
Разделы: Математика
Данный урок проводится в ходе изучения темы: “Решение задач с помощью уравнений” (третий урок по теме) в курсе изучения алгебры по учебнику Г.В.Дорофеева, И.Ф.Шарыгина и др. “Алгебра 7” М: Просвещение 2007год.
К моменту проведения урока учащиеся уже хорошо знакомы с задачей про фазанов и кроликов из темы “Разные арифметические задачи”, которая изучалась в курсе “Математика 5” по учебнику Г.В.Дорофеева, И.Ф.Шарыгина и др.(там она была решена арифметическим способом), также в курсе изучения алгебры они уже научились решать уравнения и составлять уравнения по условию задач и на последних двух уроках уже решали задачи с помощью уравнений. На этом уроке учащиеся будут решать задачу про фазанов и кроликов с помощью уравнений, беря за x различные величины, а в конце урока учитель покажет им, как можно решить такую задачу с помощью системы уравнений в качестве пропедевтики темы: “Решение задач с помощью систем уравнений”, которая будет изучаться в конце 7класса.
Цели урока: На примере одной задачи рассмотреть 6 различных способов её решения: арифметический, четыре – с помощью уравнения (беря за x различные величины) и с помощью системы уравнений. Отработать навыки решения задач с помощью уравнений.
Ход урока
1. Организационный момент.
Учитель:
Сегодня на уроке мы вновь встретимся с Вами с хорошо известной Вам задачей про фазанов и кроликов (задача выводится на доску “В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Узнайте число фазанов и число кроликов”), но если раньше мы ее решали арифметическим способом, то сегодня будем ее решать с помощью уравнений и даже системы уравнений.
Давайте начнем с того, что вспомним, как ее можно решить арифметически.
2. Арифметический способ решения задачи.
(Учитель вместе с классом разбирает арифметический способ решения задачи, после чего решение еще раз выводится на доску)
1) Представим, что на верх клетки. В которых сидят фазаны и кролики, положили морковку. Все кролики встанут на задние лапки, чтобы дотянуться до морковки. Сколько ног в этот момент будет стоять на земле?
2)Но в условии даны 94ноги. Где же остальные? Остальные не посчитаны – это передние лапки кроликов. Сколько их?
3)Сколько же кроликов?
4) А сколько фазанов?
Ответ: 23фазана и 12 кроликов в клетке.
– Так мы решали задачу в пятом классе, но теперь мы уже научились решать задачи с помощью уравнений. Так давайте попробуем применить этот способ решения к нашей задаче.
3. Решение задачи с помощью уравнений.
– Во-первых, давайте определимся, что мы можем взять за x в этой задаче.
– Число фазанов или число кроликов.
-Давайте возьмем за x сначала число фазанов, и решим задачу с помощью уравнения.
(Один из желающих выходит к доске и решает задачу. После того, как задача будет решена и разобрана, она еще раз выводится на доску, а сама доска освобождается для следующего решения.)
1)Пусть x фазанов в клетке. Тогда кроликов в клетке 35- x . Всего у фазанов 2 x ног, а у кроликов 4·(35- x ) ног. Зная, что всего у них 94 ноги составим уравнение:
23фазана в клетке
2) 35-23=12(кроликов) в клетке.
Ответ:23фазана и 12 кроликов в клетке.
– Решая эту задачу мы брали за x число фазанов, но вы предлагали взять за x и число кроликов. Решите, пожалуйста, эту задачу, взяв за x число кроликов. Решение будет аналогично тому, что только что было приведено в тетрадях и на доске. ( Учащиеся работают самостоятельно, по окончании работы, учитель выводит на доску решение и идет проверка решения и оформления задачи)
1) Пусть x кроликов в клетке. Тогда фазанов в клетке 35- x . Всего у фазанов 2(35- x ) ног, а у кроликов 4 x ног. Зная, что всего у них 94 ноги составим уравнение:
12 кроликов в клетке
2) 35-12=23(фазана) в клетке.
Ответ: 23фазана и 12 кроликов в клетке.
– Ребята, а скажите, пожалуйста, что еще можно взять за x в этой задаче?
– Количество ног или у фазанов, или у кроликов.
– Давайте возьмем за x количество ног у всех фазанов и попробуем решить эту задачу.
(Один из желающих выходит к доске и решает задачу. После того, как задача будет решена и разобрана, она еще раз выводится на доску, а сама доска освобождается для следующего решения.)
1)Пусть у фазанов x ног, тогда у кроликов 94- x ног. Т.к. у каждого фазана по 2 ноги, то у x фазанов x :2 ног, а кроликов по 4 ноги, значит их (94- x ):4. Зная, что в клетке всего 35 фазанов и кроликов составим уравнение:
46 ног у фазанов.
2) 46:2=23(фазана) в клетке.
Ответ: 23 фазана и 12 кроликов в клетке.
– Ну, а теперь возьмите за x число ног у кроликов и решите эту задачу самостоятельно. ( Учащиеся работают самостоятельно, по окончании работы, учитель выводит на доску решение и идет проверка решения и оформления задачи).
1)Пусть у кроликов x ног, тогда у фазанов 94- x ног. Т.к. у каждого фазана по 2 ноги, то у (94- x ) фазанов (94- x ):2 ног, а кроликов по 4 ноги, значит их x :4. Зная, что в клетке всего 35 фазанов и кроликов составим уравнение:
48 ног у кроликов.
2) 48:4=12(кроликов) в клетке.
Ответ: 23 фазана и 12 кроликов в клетке.
– Мы разобрали с Вами 4 способа решения задачи про фазанов и кроликов с помощью уравнений, вспомнили арифметический способ, но есть и еще способ, который вы сможете применять уже в конце 7 класса. Давайте рассмотрим этот способ в ознакомительном плане.
4. Решение задачи с помощью системы уравнений.
(Рассматривается способ решения задачи с помощью системы уравнений, решение рассматривается очень подробно, так как учащиеся с системой сталкиваются впервые)
Пусть x кроликов и y фазанов было в клетке. Зная, что их всего 35, составим первое уравнение системы:
Зная, что у каждого кролика 4 ноги, а у каждого фазана 2ноги, а всего их 94, составим второе уравнение системы: 4 x +2 y =94
Объединим уравнения в систему и решим её:
Ответ: 23 фазана и 12 кроликов в клетке.
5. Подведение итогов.
Сегодня на уроке мы работали с Вами над решением старинной задачи “ про фазанов и кроликов”: рассмотрели 6 различных способов ее решений 4 из которых с помощью уравнений, еще раз отработали навыки составления уравнений по условию задач и решению этих уравнений.
Источник
Как решать логические и математические задачи
Решение задач на логику — отличная гимнастика для ума детей и взрослых на каждый день. На ЛогикЛайк более 3500 заданий с ответами и пояснениями, полноценный учебный комплекс для развития логики и способностей к математике.
Решаем логические задачи
Чтобы научиться решать типовые логические задачи, простые и нестандартные математические задачи, важно знать основные приемы и методы их решения. Ведь решить одну и ту же задачу и прийти к правильному ответу во многих случаях можно разными способами.
Знание и понимание различных методов решения поможет определить, какой способ подойдет лучше в каждом конкретном случае, чтобы выбрать наиболее быстрый и простой путь получения ответа.
К «классическим» логическим задачам относятся текстовые задачи, цель решения которых состоит в распознавании объектов или расположении их в определенном порядке в соответствии с заданными условиями.
Более сложными и увлекательными типами заданий являются задачи, в которых отдельные утверждения являются истинными, а другие ложными. Задачи на перемещение, перекладывание, взвешивание, переливание — самые яркие примеры широкого ряда нестандартных задач на логику.
Основные методы решения логических задач
- метод рассуждений;
- с помощью таблиц истинности;
- метод блок-схем;
- средствами алгебры логики (алгебры высказываний);
- графический (в том числе, «дерево логических условий», метод кругов Эйлера);
- метод математического бильярда.
Давайте рассмотрим подробнее с примерами три популярных способа решения логических задач, которые мы рекомендуем использовать в начальной школе (детям 6-12 лет):
- метод последовательных рассуждений;
- разновидность метода рассуждений — «с конца»;
- табличный способ.
Метод последовательных рассуждений
Самый простой способ решения несложных задач заключается в последовательных рассуждениях с использованием всех известных условий. Выводы из утверждений, являющихся условиями задачи, постепенно приводят к ответу на поставленный вопрос.
На столе лежат Голубой , Зеленый , Коричневый и Оранжевый карандаши.
Третьим лежит карандаш, в имени которого больше всего букв. Голубой карандаш лежит между Коричневым и Оранжевым .
Разложи карандаши в описанном порядке.
Рассуждаем. Последовательно используем условия задачи для формулирования выводов о позиции, на которой должен лежать каждый следующий карандаш.
- Больше всего букв в слове «коричневый», значит, он лежит третьим.
- Известно, что голубой карандаш лежит между коричневым и оранжевым. Справа от коричневого есть только одна позиция, значит, расположить голубой между коричневым и другим карандашом возможно только слева от коричневого.
- Следующий вывод на основе предыдущего: голубой карандаш лежит на второй позиции, а оранжевый — на первой.
- Для зеленого карандаша осталась последняя позиция — он лежит четвертым.
Метод «с конца»
Такой способ решения является разновидностью метода рассуждений и отлично подходит для задач, в которых нам известен результат совершения определенных действий, а вопрос состоит в восстановлении первоначальной картины.
Бабушка испекла для троих внуков рогалики и оставила их на столе. Коля забежал перекусить первым. Сосчитал все рогалики, взял свою долю и убежал.
Аня зашла в дом позже. Она не знала, что Коля уже взял рогалики, сосчитала их и, разделив на троих, взяла свою долю.
Третьим пришел Гена, который тоже разделил остаток выпечки на троих и взял свою долю.
На столе осталось 8 рогаликов.
Сколько рогаликов из восьми оставшихся должен съесть каждый, чтобы в результате все съели поровну?
Начинаем рассуждение «с конца».
Гена оставил для Ани и Коли 8 рогаликов (каждому по 4). Получается, и сам он съел 4 рогалика: 8 + 4 = 12.
Аня оставила для братьев 12 рогаликов (каждому по 6). Значит, и сама она съела 6 штук: 12 + 6 = 18.
Коля оставил ребятам 18 рогаликов. Значит, сам съел 9: 18 + 9 = 27.
Бабушка положила на стол 27 рогаликов, рассчитывая, что каждому достанется по 9 штук. Поскольку Коля уже съел свою долю, Аня должна съесть 3, а Гена — 5 рогаликов.
Решение логических задач с помощью таблиц истинности
Суть метода состоит в фиксации условий задачи и полученных результатов рассуждений в специально составленных под задачу таблицах. В зависимости от того, является высказывание истинным или ложным, соответствующие ячейки таблицы заполняются знаками «+» и «-» либо «1» и «0».
Три спортсмена ( красный , синий и зеленый ) играли в баскетбол.
Когда мяч оказался в корзине, красный воскликнул: «Мяч забросил синий».
Синий возразил: «Мяч забросил зеленый».
Зеленый сказал: «Я не забрасывал».
Кто забросил мяч, если только один из троих сказал неправду?
Сначала таблицу составляют: слева записывают все утверждения, которые содержатся в условии, а сверху — возможные варианты ответа.
Затем таблицу последовательно заполняют: верные утверждения отмечают знаком «+», а ложные утверждения — знаком «-«.
Рассмотрим первый вариант ответа («мяч забросил красный «), проанализируем утверждения, записанные слева, и заполним первый столбик.
Исходя из нашего предположения («мяч забросил красный «), утверждение «мяч забросил синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый» также ложь. Заполняем ячейку знаком «-«.
Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Рассмотрим второй вариант ответа (предположим, что мяч забросил зеленый ) и заполним второй столбик.
Утверждение «мяч забросил Синий» — ложь. Ставим в ячейке «-«.
Утверждение «мяч забросил зеленый « — истина. Заполняем ячейку знаком «+».
Утверждение зеленого «Я не забрасывал» – ложь. Ставим в ячейке «-«.
И, наконец, третий вариант: предположим, что «мяч забросил синий «.
Тогда утверждение «мяч забросил синий « — истина. Ставим в ячейке «+».
Утверждение «мяч забросил зеленый» — ложь. Заполняем ячейку знаком «-«. Утверждение зеленого «Я не забрасывал» – истина. Ставим в ячейке «+».
Так как по условию лишь один из троих ребят сказал неправду, в заполненной таблице выбираем такой вариант ответа, где будет только одно ложное утверждение (в столбце один знак «-«). Подходит третий столбец.
Значит, правильный ответ – мяч забросил синий.
Метод блок-схем
Метод блок-схем считается оптимальным вариантом для решения задач на взвешивание и на переливание жидкостей. Альтернативный способ решения этого типа задач — метод перебора вариантов — не всегда является оптимальным, да и назвать его системным довольно сложно.
- графически (блок-схемой) описываем последовательность выполнения операций;
- определяем порядок их выполнения;
- в таблице фиксируем текущие состояния.
Подробнее об этом и других способах решения логических задач с примерами и описанием хода решения мы рассказываем в полном Курсе ЛогикЛайк по развитию логического мышления.
Отгадывайте самые интересные загадки на логику, собранные специально для постоянных читателей нашего блога и учеников LogicLike, решайте логические задачи онлайн вместе с тысячами детей и взрослых!
Учим детей 5-12 лет решать любые логические и математические задачи. Более 3500 занимательных заданий с ответами и пояснениями.
Источник