Решение задач способом составления уравнений ответ

Как решать задачи на составление уравнений

Решение задач с помощью уравнений

В школьном курсе математики многие задачи можно решить с помощью универсального способа, который предполагает составление уравнения, то есть математической модели, построенной согласно условиям задания.

Уравнение является равенством, содержащим неизвестное, значение которого требуется вычислить.

Решить уравнение — значит определить все его корни.

Корень уравнения — число, которое можно подставить в уравнение на место неизвестного, чтобы получить в результате верное числовое равенство.

Таким образом, множество разных примеров можно решить путем составления линейного уравнения. Для этого условие задания переводят на язык арифметики. Полученное в результате уравнение или формула являются следствием такой трансформации.

Под условием задачи может пониматься реальная ситуация, объяснение определенного процесса или какое-либо событие. Получение ответа возможно при решении уравнения, то есть определении корня. Далее ответ следует проверить, чтобы исключить его противоречивость по отношению к условию.

Общий порядок, описание алгоритма

Известно, что уравнение является равенством с неизвестной величиной, обозначенной буквой, значение которой требуется вычислить. С помощью составления уравнения упрощается отработка многих задач. Перед тем как приступить к арифметическим действиям, необходимо внимательно прочитать условия задания. В результате получится определить начальные параметры и обнаружить связь между известными и неизвестными величинами.

  1. Обозначить с помощью буквы величину, которая является неизвестной по условию задачи.
  2. Составить уравнение, руководствуясь информацией из задания.
  3. Решить уравнение, то есть найти его корни.
  4. Записать ответ.

Существует несколько полезных приемов, которые пригодятся в процессе решения задачи:

  • допустимо переносить числа из одной части уравнения в другую, изменяя их знак на противоположный;
  • можно разделить или умножить обе части уравнения на одинаковое число, не равное нулю.

В качестве наглядного примера приведем решение пары задач.

Мальчик задумал какое-то число. Затем он увеличил его в 2 раза, суммировал с 8 и в результате получил 10. Нужно определить, какое число задумал мальчик.

Пусть искомое число будет равно х.

По условиям задачи х требуется умножить на 2. Получим 2х.

Затем нужно сложить результат с 8:

Согласно условию, данное выражение равно 10. Можно записать уравнение:

2x\div 2 = 2\div 2

Ответ: число, которое задумал мальчик, является 1.

Задумано число, три пятых от которого составляет 15. Нужно найти это число.

Предположим, что искомое число равно х.

В таком случае три пятых от этого числа можно записать, как:

Согласно условию задания:

Ответ: задуманное число равно 25.

Примеры решения задач для 6 класса

Кто-то однажды задал учителю вопрос: «Сколько имеешь учеников у себя в учении, ибо хочу отдать тебе в учение своего сына?». Ответ учителя был следующим: «Если придет ко мне еще столько, сколько имею, да еще половина и еще четверть и еще твой сын, то будет у меня 100 учеников». Необходимо определить количество учеников, которые обучались у учителя.

Представим, что х — это искомое количество учеников. В таком случае половина от этого количества составит 1 2 x , четверть будет равна 1 4 x . Общее количество учеников составляет 100 человек. Исходя из условий задачи, можно записать уравнение:

х + х + 1 2 x + 1 4 x + 1 = 100

После сложения всех элементов в левой части уравнения получим:

2 3 4 x + 1 = 100

Единицу можно перенести в правую часть уравнения. При этом следует изменить знак на «-»:

2 3 4 x = 100 – 1

Далее следует разделить обе части уравнения на 2 3 4 x и л и 11 4 x :

Ответ: изначально у учителя было 36 учеников.

Необходимо вычислить, какое число было задумано, если при сложении его с 10 сумма станет равна 15.

Предположим, что х является задуманным числом. К нему необходимо прибавить 10, чтобы получить 15. Исходя из данных условий, запишем уравнение, которое требуется решить:

Читайте также:  Способы отчуждения авторских прав

Допустимо перенести 10 в правую часть уравнения, меняя при этом его знак:

Ответ: задуманное число — это 5.

Цена рубашки составляет 1200 рублей. Если приобрести эту вещь в выходной день, то можно получить скидку в 30%. Необходимо вычислить стоимость рубашки с учетом скидки.

Представим, что х является стоимостью рубашки за минусом предложенной продавцом скидки. В первую очередь следует определить цену рубашки со скидкой в процентном выражении:

1200 x = 100 % 70 %

После преобразования пропорция примет вид:

x = 1200 × 70 100

Ответ: рубашка с учетом скидки стоит 840 рублей.

Источник

Решение задач с помощью уравнений

Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.

Введение

В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.

Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.

Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.

Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.

Алгоритм решения текстовых задач с помощью уравнений

Для решения задачи с помощью уравнения делают следующие действия:

  1. Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
  2. Решают уравнение.
  3. Истолковывают результат.

Примеры решений

Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?

Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.

Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.

Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)

Раскроем скобки в правой части уравнения: $3x+24=7x-7\cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7\cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.

Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.

Монет в мешке: $48$

Монет в сундуке: $48\cdot 3=144$

Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?

Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.

Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.

Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.

Муки в первом мешке: $700\cdot 3=2100$ кг.

Читайте также:  Амортизация способом уменьшаемого остатка что это

Муки во втором мешке: $700$ кг.

Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.

Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:

Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:

Избавимся от коэффициента при неизвестном и получим ответ:

Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.

Картошки в первом мешке: $15\cdot 4=60$ кг.

Картошки во втором мешке: $15$ кг.

Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.

Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:

По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)

Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.

Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).

Первоначальная скорость машин: $v=60$ км/ч.

Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?

Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3\cdot 150$ кг цемента, а у второй $x-3\cdot 200$ кг.

По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:

$$x-50-3\cdot 150=1,5(x-3\cdot 200)$$

Осталось решить данное уравнение относительно $x$ и истолковать ответ.

Упростим и раскроем скобки в правой части, тогда получим:

Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=\frac<15><10>=\frac<3><2>$.

Запишем с учётом перевода дробей и упростим:

Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:

Домножим обе части на 2 и получим ответ:

Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$

Кол-во цемента в первой бригаде: $800-50=750$ кг.

Кол-во цемента во второй бригаде: $800$ кг.

Задачи для самостоятельного решения

По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?

Читайте также:  Решение систем рациональных уравнений способом подстановки 8 класс никольский презентация

Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.

В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$

Ответ: Рабочие отработали 6 дней.

Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?

Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:

1 фунт и половина кирпича = целый кирпич.

Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?

Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:

$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:

Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.

Ответ: 9,5 копеек стоит бутыка без пробки.

На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?

Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:

Ответ: На шапку ушло $80$ г, на свитер $5\cdot 80=400$ г, на шарф $80-5=75$ г.

Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?

Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:

$$2x-10+0,3\cdot 2x-0,3\cdot 10=65$$

$$2x+0,3\cdot 2x=65+10+0,3\cdot 10$$

Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.

Источник

Статья «Решение задач способом составления уравнения»

Решение задач способом составления уравнения

Современное содержание математического образования направлено главным образом на интеллектуальное развитие младших школьников, формирование культуры и самостоятельности мышления.

Данный аспект является главным в развитии личности ученика, так как мышление влияет на воспитанность человека. Достаточная подготовленность к мыслительной деятельности снимает психологические нагрузки в учении, предупреждает неуспеваемость, сохраняет здоровье.

Важнейшим фактором в развитии мыслительных операций служат педагогические системы развивающего обучения. К такой системе относится методика обучения по УДЕ.

Одна из основных целей технологии УДЕ – создание действенных и эффективных условий для развития познавательных способностей детей, их интеллекта и творческого начала, расширение математического кругозора.

В основу технологии УДЕ положен принцип: чтобы обучать ускоренно и при высоком уровне знаний, необходимо рассматривать целостные группы взаимосвязанных понятий. В триадах задач реализуется фактор дополнительности подсознательных механизмов познания.

Триада означает выполнение учеником на одном уроке:

обращение этого задания и самостоятельное обобщение решенной задачи;

составление новой задачи и её решение.

Этот приём даёт хороший эффект в обучении, так как он побуждает учащихся осмысливать и усваивать материал на основе более высокой степени обучения.

Вопрос преемственности между начальным и средним звеньями обучения очень актуален.

В среднем звене школы ученики, например, на уроках математики обучаются решению задач путём составления уравнения, и учителя сталкиваются с недопониманием учащимися этой темы. А решать задачи путём составления уравнения можно уже в начальной школе с использованием технологии УДЕ.

Сделаем срез методики обучения решению задач путём составления уравнения.

а) Выражение с окошечками: 3 + 1 = 4 + 1 = 4

б) Знакомство с понятиями «слагаемое» и «сумма»:

3 и 1 – слагаемые. Числа, которые складываются, называются слагаемыми.

4 – сумма. Число, которое получается в результате сложения, называется суммой.

в) четверка примеров:

3 + 1 = 4 4 – 1 = 3

1 + 3 = 4 4 – 3 = 1

Триада задач (на нахождение суммы и неизвестного слагаемого)

Источник

Оцените статью
Разные способы