Решение задач по химии математическим способом

Математические способы решения расчетных задач по химии

Разделы: Химия

Решение расчетных задач – важнейшая составная часть школьного предмета «химия», так как это один из приёмов обучения, посредством которого обеспечивается более глубокое и полное усвоение учебного материала по химии и вырабатывается умение самостоятельного применения полученных знаний.

Чтобы научиться химии, систематическое изучение известных истин химической науки должно сочетаться с самостоятельным поиском решения сначала малых, а затем и больших проблем. Как бы ни были интересны теоретические разделы учебника и качественные опыты практикума, они недостаточны без численного подтверждения выводов теории и результатов эксперимента: ведь химия – количественная наука. Включение задач в учебный процесс позволяет реализовать следующие дидактические принципы обучения: 1) обеспечение самостоятельности и активности учащихся; 2) достижение прочности знаний и умений; 3) осуществление связи обучения с жизнью; 4) реализация предпрофильного и профильного политехнического обучения.

Решение задач является одним из звеньев в прочном усвоении учебного материала, так как формирование теорий и законов, запоминание правил и формул, составление уравнений реакций происходит в действии.

В решении химических задач целесообразно использовать алгебраические приёмы. В этом случае исследование и анализ ряда задач сводятся к преобразованиям формул и подставлению известных величин в конечную формулу или алгебраическое уравнение. Задачи по химии похожи на задачи по математике, и некоторые количественные задачи по химии (особенно на «смеси») удобнее решать через систему уравнений с двумя неизвестными.

Рассмотрим несколько таких задач.

Смесь карбонатов калия и натрия массой 7 г обработали серной кислотой, взятой в избытке. При этом выделившийся газ занял объем 1,344 л (н.у.). Определить массовые доли карбонатов в исходной смеси.

Составляем уравнений реакций:

Na2CO3 + H2SO4 = Na2SO4 + CO2^ + H2O 1моль 1моль 106г 22,4л (7-х)г (1,344-у)л K2CO3 + H2SO4 = K2SO4 + CO2^ + H2O 1моль 1моль 138г 22,4л

Обозначим через хг массу карбоната натрия в смеси, а массу карбоната калия – через (7-х)г. Объём газа, выделившегося при взаимодействии карбоната натрия с кислотой, обозначаем через у л, а объём газа, выделившегося при взаимодействии карбоната калия с кислотой, обозначаем через (1,344-у)л.

Над уравнениями реакций записываем введенные обозначения, под уравнениями реакций записываем данные, полученные по уравнениям реакций, и составляем систему уравнений с двумя неизвестными:

Из первого уравнения выражаем у через х:

Решаем уравнение (4) относительно х.

Следовательно, масса карбоната натрия равна 4,24 г.

Массу карбоната калия находим вычитанием из общей массы смеси карбонатов массы карбоната натрия:

Массовые доли карбонатов находим по формуле:

Ответ: массовая доля карбоната натрия равна 60,57%, массовая доля карбоната калия равна 39,43%.

Смесь карбонатов калия и натрия массой 10 г растворили в воде и добавили избыток соляной кислоты. Выделившийся газ пропустили через трубку с пероксидом натрия. Образовавшегося кислорода хватило, чтобы сжечь 1,9 л водорода (н.у.). Напишите уравнения реакций и рассчитайте состав смеси.

Составляем уравнения реакций:

х г y л
Na2CO3 + 2HCl = 2NaCl + H2O + СО2 (1)
1моль 1моль
106г 22,4л
(10-x)г (1.9-y)л
K2CO3 + 2HCl = 2KCl + H2O + CO2^ (2)
1моль 1моль
138г 22,4л
Читайте также:  Имитация как способ маскировки заключается
х л 0,95л
2Na2O2 + 2CO2 = 2Na2CO3 + O2 (3)
2моль 1моль
44,8л 22,4л
1,9л хл
2 + О2 = 2Н2О (4)
2моль 1 моль
44,8л 22,4л

Обозначим через х г массу карбоната натрия, а масса карбоната калия будет равна (10-х)г.

По уравнению (4) рассчитаем объем кислорода, образовавшегося в процессе реакции (3).

Для этого через х в уравнении обозначим объём кислорода и, исходя из объёма водорода, составим пропорцию и решим её относительно х:

х=0,95л (объём выделившегося кислорода).

Исходя из уравнения (3), рассчитаем объём углекислого газа, образовавшегося при обработке смеси карбонатов натрия и калия избытком соляной кислоты. Для этого составим пропорцию:

Через у л обозначим объём газа, выделившегося в процессе реакции (1), а через (1,9-у)л объём газа, выделившегося в процессе реакции (2). Составим систему уравнений с двумя неизвестными:

Из уравнения (5) выражаем у через х и подставляем в уравнение (6):

Уравнение (7) решаем относительно х:

х=5,65г (масса карбоната натрия).

Масса карбоната калия находится как разность между массой смеси карбонатов натрия и калия и массой карбоната натрия:

10-5,65=4,35г (масса карбоната калия).

Ответ: массовая доля карбоната натрия равна 56,5%, массовая доля карбоната калия равна 43,5%.

Задачи для самостоятельного решения.

Смесь железа и цинка массой 12,1 г обработали избытком раствора серной кислоты. Для сжигания полученного водорода необходимо 2,24л кислорода (давление 135,6 кПа, температура – 364К). Найдите массовую долю железа в смеси.

Смесь метиловых эфиров уксусной кислоты и пропионовой кислоты массой 47,2г обработали 83,4мл раствора гидроксида натрия с массовой долей 40% (плотность 1,2г/мл). Определите массовые доли эфиров ( в %) в смеси, если известно, что гидроксид натрия, оставшийся после гидролиза эфиров, может поглотить максимально 8,96л оксида углерода (IV).

Эти задачи можно решать и другими способами, но этот способ решения задач по химии способствует развитию логического мышления, даёт возможность показать взаимосвязь математики и химии, формирует умение составлять и применять алгоритмы последовательности действий при решении, дисциплинирует и направляет деятельность на правильное использование физических величин и корректное проведение математических расчётов.

Источник

Основные методы решения задач на смешивание растворов

“Только из союза двоих, работающих вместе и при помощи друг друга, рождаются великие вещи.”

Антуан Де Сент-Экзюпери

Математика многообразна и многогранна. Существует ряд ситуаций в образовательном процессе, когда при изучении какой-либо темы по физике, химии, биологии и т.д. затрагиваются понятия математики, например, существуют задачи, которые решают как на уроках математики, так и на уроках химии. Способы решения задач представляют и учителя химии, и математики, но есть проблема: математики знают математику, а химики — химию. И не всегда способы совпадают.

В данной статье приводятся рекомендации по решению химических задач на смешение растворов разными способами: с помощью расчетной формулы, “Правила смешения”, “Правила креста”, графического метода, алгебраического метода. Приведены примеры решения задач.

1. Основные химические понятия

Приведем некоторые указания к решению задач на растворы.

Основными компонентами этого типа задач являются:

а) массовая доля растворенного вещества в растворе;

Читайте также:  Способ приобретения инвестирование что это такое

б) масса растворенного вещества в растворе;

в) масса раствора.

а) все получившиеся смеси и сплавы являются однородными;

б) смешивание различных растворов происходит мгновенно;

в) объем смеси равен сумме объемов смешиваемых растворов;

г) объемы растворов и массы сплавов не могут быть отрицательными.

Определения и обозначения.

Массовая доля растворенного вещества в растворе — это отношение массы этого вещества к массе раствора.

где — массовая доля растворенного вещества в растворе;

— масса растворенного вещества в растворе;

— масса раствора.

Следствия формулы (1):

— массовая доля растворенного вещества в первом растворе;

— массовая доля растворенного вещества во втором растворе;

— массовая доля растворенного вещества в новом растворе, полученном при смешивании первого и второго растворов;

m1(в-ва), m2(в-ва), m(в-ва) — массы растворенных веществ в соответствующих растворах;

m1(р-ра), m2(р-ра), m(р-ра) — массы соответствующих растворов.

Основными методами решения задач на смешивание растворов являются: с помощью расчетной формулы, “Правило смешения”, “Правило креста”, графический метод, алгебраический метод.

Приведем описание указанных методов.

1.1. С помощью расчетной формулы

В наших обозначениях, получим формулу для вычисления массовой доли вещества (?) в смеси.

1. Масса полученного при смешивании раствора равна:

2. Определим массы растворенных веществ в первом и втором растворах:

m1(в-ва)= •m1(р-ра), m2(в-ва)= •m2(р-ра).

3. Следовательно, масса растворенного вещества в полученном растворе вычисляется как сумма масс веществ в исходных растворах:

m(в-ва) = m1(в-ва) + m2(в-ва) = •m1(р-ра) + •m2(р-ра).

4. Таким образом, массовая доля растворенного вещества в полученном растворе равна:

где — массы соответствующих растворов.

Замечание: При решении задач удобно составлять следующую таблицу.

1-й раствор

2-й раствор

Смесь двух растворов

Масса растворов

Массовая доля растворенного вещества

Масса вещества в растворе

m1

m2

(m1 + m2)

1.2. “Правило смешения”

Воспользуемся формулой (4):

тогда

Отсюда

Таким образом, отношение массы первого раствора к массе второго равно отношению разности массовых долей смеси и второго раствора к разности массовых долей первого раствора и смеси.

Аналогично получаем, что при

Замечание: Формула (5) удобна тем, что на практике, как правило, массы веществ не отвешиваются, а берутся в определенном отношении.

1.3. “Правило креста”

“Правилом креста” называют диагональную схему правила смешения для случаев с двумя растворами.

Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху-большая), на пересечении отрезков — заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают в каком отношении надо слить исходные растворы.

1.4. Графический метод

Отрезок прямой (основание графика) представляет собой массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости

Полученная функциональная прямая позволяет решать задачи по определению массы смешанных растворов и обратные, по массе смешанных растворов находить массовую долю полученной смеси.

Читайте также:  Способы похудеть без физических нагрузок

Построим график зависимости массовой доли растворенного вещества от массы смешанных растворов. На одной из осей ординат откладывают точку, соответствующую массовой доли , а на другой — . Обозначим на оси абсцисс точки А и В с координатами (0,0) и (m1 + m2,0), соответственно. На графике точка А(0,0) показывает, что массовая доля всего раствора равна , а точка В(m1 + m2,0) — массовая доля всего раствора равна . В направлении от точки А к точке В возрастает содержание в смеси 2-го раствора от 0 до m1+ m2 и убывает содержание 1-го раствора от m1+ m2 до 0. Таким образом, любая точка на отрезке АВ будет представлять собой смесь, имеющую одну и ту же массу с определенным содержанием каждого раствора, которое влияет на массовую долю растворенного вещества в смеси.

Замечание: Данный способ является наглядным и дает приближенное решение. При использовании миллиметровой бумаги можно получить достаточно точный ответ.

1.5. Алгебраический метод

Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений.

2. Примеры решения задач

В 100 г 20%-ного раствора соли добавили 300 г её 10%-ного раствора. Определите процентную концентрацию раствора.

Решение:


    C помощью расчетной формулы


Путем последовательных вычислений

    Сколько растворенного вещества содержится:

а) в 100 г 20%-ного раствора; [100•0,2 = 20(г)]

б) в 300 г 10%-ного раствора? [300•0,1 = 30(г)]

Сколько вещества содержится в образовавшемся растворе?

20 г + 30 г = 50 г

Чему равна масса образовавшегося раствора?

100 г + 300 г = 400 г

Какова процентная концентрация полученного раствора?

Пусть х — процентная концентрация полученного раствора. В первом растворе содержится 0,2•100(г) соли, а во втором 0,1•300(г), а в полученном растворе х•(100 + 300)(г) соли. Составим уравнение:

0,2•100 + 0,1•300 = х•(100 + 300);

Задача 2. u(№10.26, [1])

Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора в килограммах было использовано?

а) C помощью уравнения:

Пусть х (кг) — масса 1-го раствора, тогда 3-х (кг) -масса 2-го раствора.

0,1•х (кг) содержится соли в 1-ом растворе,

0,25•(3-х) (кг) содержится соли в 2-ом растворе,

0,2•3 (кг) содержится соли в смеси.

Учитывая, что масса соли в 1-ом и 2-ом растворах равна массе соли в смеси, составим и решим уравнение:

0,1•х + 0,25•(3-х) = 0,2•3;

х = 1, 1кг-масса 1-го раствора

3 — х = 3 — 1 =2 (кг) — масса 2-го раствора.

Ответ: 1 кг, 2 кг.

б) С помощью системы уравнений

Пусть х (кг) — количество первого раствора, у (кг) — количество второго раствора. Система уравнений имеет вид:

Ответ: 1 кг, 2 кг.

Составим диагональную схему

Сосуд емкостью 5 л содержит 2 л р%-ного (по объёму) раствора соли. Сколько литров 20%-ного раствора такой же соли надо налить в сосуд, чтобы процентное содержание соли в сосуде стало наибольшим?

Решение (графический способ)

Заметим, что по условию, объём второго раствора не превышает трёх литров.

  1. Ели р 20, то при добавлении 2-го раствора, процентное содержание соли будет уменьшаться, т.е. прилить нужно 0 л.

Источник

Оцените статью
Разные способы