Решение задач кинематики задача встреча графический способ решения 7 класс физика

Задача «встреча». Графический способ решения

Теперь, когда мы с вами научились описывать движение тел, применим паши знания для решения практических задач. Начнем с одной из самых важных и распространенных в природе и технике задач – задачи о встрече тел. Наверняка вы неоднократно слышали о стыковках космических аппаратов, видели, как встречные поезда одновременно подъезжают к промежуточной станции, выпущенная из лука стрела попадает в цель и т. п. Все эти ситуации можно представить как движение двух точечных тел навстречу друг другу. Задача заключается в том, чтобы определить, где произойдет их встреча и когда, т. е. через какое время после начала движения тел, она состоится.

Считается, что два тела встретились, если в некоторый момент времени их положения в пространстве совпали. Иначе говоря, в этот момент времени их координаты в какой-либо системе отсчета сравнялись. Поэтому для решения задачи нам понадобится ввести систему отсчета, в которой необходимо будет описать движение этих тел (в графическом или аналитическом виде). Только таким образом мы сможем грамотно решить данную задачу.

Рассмотрим простой пример. Пусть по прямолинейной дороге навстречу друг другу одновременно начинают двигаться пешеход и велосипедист. Расстояние между ними в момент начала движения составляет l = 20 м. При этом они движутся равномерно относительно дороги навстречу друг другу со скоростями, модули которых |vп| = 1 м/с и |vв| = 3 м/с соответственно. (Мы поставили знаки модуля у скоростей движущихся тел. Это связано с тем, что, пока не выбрана система отсчета. мы не можем сказать, у кого из них значение скорости будет положительным, а у кого – отрицательным. Другими словами, мы не можем определить, будут увеличиваться или уменьшаться их координаты в процессе движения.)

Ответим на два вопроса. Где произойдет встреча пешехода и велосипедиста? Когда (через какое время после начала движения) она состоится?

Рассмотрим каждый шаг решения задачи.

Шаг 1 . Введем систему отсчета (рис. 20). В качестве тела отсчета выберем землю, а началом отсчета – место, где растет дерево, от которого начинает свое движение пешеход. Координатную ось направим вдоль дороги в направлении движения пешехода. В качестве единицы длины выберем 1 м. Будем считать пешехода и велосипедиста точечными телами. Координата каждого из тел будет численно равна расстоянию от дерева до этого тела в заданный момент времени. Часы (секундомер) включим в тот момент, когда начинается движение.

Шаг 2 . Определим значение координа пешехода и велосипедиста в момент включения секундомера. Ясно, что начальная координата пешехода xп0 (читается «икс пэ нулевое») равна 0, а велосипедиста xв0 = 20 м.

Шаг 3 . Найдем значения скоростей равномерного движения тел. Из рисунка видно, что в выбранной нами системе отсчета координата пешехода в процессе движения будет увеличиваться. Следовательно, значение скорости пешехода положительно: vп = 1 м/с. Напротив, велосипедист в выбранной системе отсчета движется так, что его координата со временем уменьшается. Поэтому значение его скорости отрицательно: vв = -3 м/с.

После того как определены начальные координаты и значения скоростей движения тел, можно переходить к описанию их движения. Для этого у нас есть несколько способов. Начнем с графического.

Шаг 4 (графический) . Построим систему координат, состоящую из оси времени t и оси координаты X. Отметим начальные координаты пешехода и велосипедиста (рис. 21).

Читайте также:  Способов много как выбрать

Шаг 5 (графический) . Теперь от точки xп0 проведем прямую линию, описывающую зависимость координаты пешехода от времени. Поскольку по условию задачи координата пешехода за каждую секунду увеличиваются на 1 м, то это будет «поднимающаяся» прямая линия, проходящая через точки с координатами (1; 1), (2; 2), (3; 3), (4;4), (5; 5) и т.д.

График зависимости от времени координаты велосипедиста – это тоже прямая, но она исходит из точки xв0 = 20 м, расположенной на оси координаты. Координата велосипедиста со временем уменьшается на 3 м за каждую секунду. Поэтому линия, описывающая зависимость этой координаты от времени, «опускается» за каждую секунду на 3 м, т. е. эта линия проходит через точки с координатами (0; 20), (1; 17), (2; 14), (3; 11), (4; 8), (5; 5) и т. д.

Из рис. 21 следует, что прямые, описывающие зависимости координат пешехода и велосипедиста от времени, пересекаются в точке (tвстр = 5 с, xвстр = 5 м). Это означает, что через 5 секунд после начала движения координаты пешехода и велосипедиста становятся равными: xп = xв = xвстр = 5 м. Иначе говоря, в этот момент времени положения тел в пространстве совпадут, и, таким образом, в момент tвстр = 5 с в точке с координатой xвстр = 5 м произойдет встречи пешехода и велосипедиста.

Итоги

Встречей двух тел считают совпадение их положений в пространстве (равенство их координат в одной и той же системе отсчета) в некоторый момент времени.

При графическом способе решения задачи о встрече движущихся тел необходимо: ввести систему отсчета; определить начальные координаты и значения скоростей тел; построить графики движения тел; найти точку пересечения этих графиков.

Вопросы

  1. Приведите примеры встречи двух тел. Что означает в кинематике, что два тела встретились?
  2. Перечислите шаги решения задачи «встреча».

Упражнения

  1. Определите графическим способом время и место встречи двух равномерно движущихся навстречу друг другу школьников, если в момент включения часов: а) расстояние между ними l = 30 м, а модули их скоростей |v1| = 3 м/с, |v2| = 3 м/с; б) расстояние между ними l = 30 м, |v1| = 1 м/с, |v2| = 4 м/с.
  2. Сформулируйте условие задачи, решение которой дано на рис. 22.
  3. Определите место встречи (город) двух равномерно движущихся поездов, которые одновременно выезжают навстречу друг другу из Москвы (|v1| = 100 км/ч) и Санкт-Петербурга (|v2| = 50 км/ч) (рис. 23). Расстояние между Москвой и Санкт-Петербургом – 600 км.

Источник

Задача «встреча». Аналитический способ решения

Теперь решим задачу из предыдущего параграфа другим способом – аналитическим. Посмотрим на рис. 20 и вспомним, что было сделано за первые три шага решения этой задачи.

Шаг 1 . Мы ввели систему отсчета: 1) выбрали началом отсчета дерево, от которого начинал свое движение пешеход; 2) направили координатную ось вдоль дороги в направлении движения пешехода; 3) включили часы (секундомер) в момент начала движения тел.

Шаг 2 . Были определены начальные координаты пешехода (xп0 = 0) и велосипедиста (xв0= 20 м).

Шаг 3 . Используя введенную систему отсчета, мы определили значения скоростей движения пешехода (vп = 1 м/с) и велосипедиста (vв = -3 м/с).

Таким образом, первые три шага решения задачи не зависят от того, каким способом (графическим или аналитическим) мы собираемся ее решать. Но уже следующий шаг будет отличаться от того, что мы делали при графическом способе решения.

Читайте также:  Фунчоза лапша способ приготовления

Шаг 4 (аналитический). Запишем в аналитическом виде законы движения тел, учитывая известные данные. Поскольку в задаче движутся два тела (пешеход и велосипедист), то мы получаем два закона движения:

xп = 0 + 1 · t, xв = 20 — 3 · t.

Шаг 5 (аналитический) . Представим в виде уравнения условие задачи – встречу велосипедиста и пешехода. Встреча двух тел означает, что положения тел в пространстве совпадут в некоторый момент времени t = tвстр, т. е. в этот момент времени совпадут их координаты. Поэтому условие встречи будет иметь вид:

Шаг 6 (аналитический) . Запишем вместе полученные в шагах 4 и 5 выражения, присвоив каждому из них свои номер и название.
xп = 0 + 1 · t, (1) (закон движения пешехода)
xв = 20 — 3 · t, (2) (закон движения велосипедиста)
xп = xв. (3) (условие встречи пешехода и велосипедиста)

Шаг 7 (аналитический). Решение уравнений.

Для того чтобы найти значение времени t в интересующий нас момент встречи, воспользуемся условием встречи пешехода и велосипедиста – уравнением (3). Оно предполагает равенство координат двух тел. Подставим в него выражения для xп и xв из уравнений (1) и (2):

0 + 1 · t = 20 — 3 · t

Приведем подобные слагаемые и решим уравнение:

(1+3) · t = 20, t = 20/4 = 5 (с).

Таким образом, мы установили, что встреча пешехода и велосипедиста состоится через 5 с после начала движения.

Теперь определим координату точки, в которой состоится встреча. Для этого подставим полученное значение момента встречи tвстр = 5 с в закон движения пешехода – уравнение (1):

xп = 0 + 1 · tвстр = 0 + 1 · 5 = 5 (м).

Это означает, что в момент встречи координата пешехода будет равна xп = 5. Следовательно, встреча произойдет в 5 м от начала отсчета – дерева, от которого начал движение пешеход.

Ясно, что координату места встречи можно было определить, подставив время tвстр = 5 с и в закон движения велосипедиста – уравнение (2):

xв = 20 — 3 · tвстр = 20 — 3 · 5 = 5 (м).

Естественно, мы получили то же самое значение хвстр, так как координаты пешехода и велосипедиста в момент встречи совпадают.

Итоги
При аналитическом способе решения задачи «встреча» момент встречи и координата места встречи определяются из равенства координат в законах движения тел, записанных в аналитическом виде.

1. Определите аналитическим способом время и место встречи пешехода и велосипедиста (начните с шага 3) в выбранной нами ранее системе отсчета, связанной с деревом, если:
а) значение скорости пешехода осталось прежним vп = 1 м/с, а велосипедист едет ему навстречу со скоростью |vв| = 4 м/с;
б) значение скорости пешехода vп = 3 м/с, а велосипедист едет со скоростью, значение которой vв = -7 м/с.

2. Выполните предыдущее упражнение, решая задачу графическим способом.

3. Определите аналитическим способом время и координату встречи пешехода и велосипедиста, которые движутся навстречу друг другу со скоростями |vп| = 2 м/с и |vв| = 8 м/с, если начальное расстояние между ними l = 160 м и они начинают движение одновременно. (Начните решение с шага 1.)

4. Сформулируйте условие и решите задачу о встрече велосипедиста и мотоциклиста, изображенных в момент времени t = 0 на рис. 24.

Источник

Движение тел относительно друг друга. Задача «встреча»

Рассмотрим, как будет выглядеть решение уже знакомой нам задачи «встреча» в системе отсчета, связанной с одним из движущихся тел.

Пусть по прямолинейной дороге навстречу друг другу едут мотоциклист и велосипедист, как показано на рис. 38. При этом относительно Земли модуль скорости мотоциклиста |vм| = 20 м/с, а модуль скорости велосипедиста – |vв| = 10 м/с. Определим, через какое время произойдет их встреча, если в момент начала наблюдения расстояние между ними l = 600 м.

Читайте также:  Эффективные способы избавления от мышей

Шаг 1. Пусть начало отсчета совпадает с мотоциклистом. Ось X направим вдоль дороги от мотоциклиста в сторону велосипедиста, как показано на рис. 39. В качестве единицы длины выберем 1 м. Часы (секундомер) включим в момент начала наблюдения.

Шаг 2 . Найдем начальную координату велосипедиста xв0 в момент времени t = 0. Видно, что в выбранной системе отсчета xв0 = 600 м, так как расстояние от начала отсчета (мотоциклиста) до велосипедиста l = 600 м.

Шаг 3. В выбранной системе отсчета мотоциклист неподвижен (так как он является началом отсчета и его координата все время равна xм = 0). Определим значение скорости велосипедиста. В выбранной системе отсчета Земля вместе с дорогой движутся в отрицательном направлении оси X со скоростью, имеющей значение Vз = -|vм| = -20 м/с. Велосипедист по условию задачи движется относительно Земли также в отрицательном направлении оси X (навстречу мотоциклисту) со скоростью, имеющей значение vв = -10 м/с. Значит, относительно выбранной системы отсчета (мотоциклиста) велосипедист будет двигаться со скоростью, значение которой равно Vв = Vз + vв = (-20) + (-10) = -30 м/с. Напомним, что здесь, как и в предыдущем параграфе, мы обозначаем буквами v значения скоростей относительно Земли, а значения скоростей тел в выбранной системе отсчета – большими буквами V.

Шаг 4 . Запишет законы движения мотоциклиста и велосипедиста:

Шаг 5 . Представим в виде уравнения условие задачи, т. е. условие встречи мотоциклиста и велосипедиста. Как вы помните, это условие означает равенство координат движущихся навстречу друг другу тел. Поэтому

Шаг 6. Объединим полученные уравнения, присвоив каждому из них номер и название:

xм = 0 (1) (закон движения мотоциклиста)
xв = 600 — 30 · t, (2) (закон движения велосипедиста)
xв = xм. (3) (условие встречи)

Шаг 7 . Решим полученные уравнения, подставив в условие встречи (3) координаты xм и xв из уравнений (1) и (2):

0 = 600 — 30 · t,
tвстр = t = 600/30 = 20 (с).

Таким образом, встреча произойдет через 20 с.

Обратим внимание на существенное отличие данного способа решения от способа, которым мы решали задачу «встреча» раньше. Оно заключается в том, что теперь, когда мы связали систему отсчета с одним из движущихся тел, закон его движения стал очень простым: xм(t) = 0. Это существенно упростило решение уравнений. Особенно важно это будет в дальнейшем, когда тела в задачах будут двигаться намного сложнее.

Упражнения

1. Заметим, что начиная с шага 4 мы могли бы решить рассмотренную только что задачу и графическим способом. Это сделано на рис. 40. Объясните, что изображено на этом рисунке.

2. Решите задачу, изображенную на рис. 38, в системе отсчета, связанной с велосипедистом. (Особое внимание уделите вопросам: куда направить координатную ось? Куда и с какой скоростью в этой системе отсчета будут двигаться Земля и мотоциклист?)

3. Выполните упражнение 2 графическим способом начиная с шага 4.

4. Решите в общем виде задачу, условие которой изображено на рис. 38, в системе отсчета, связанной с мотоциклистом. Проведите анализ полученного решения.

Источник

Оцените статью
Разные способы