Решение уравнения модулям графическим способом

Алгебраическое и графическое решение уравнений, содержащих модули

Алгебраическое и графическое решение уравнений, содержащих модули.

2.Понятия и определения………………………………………….4

4.Способы решение уравнений, содержащих модуль…………. 6

4.1.Решение при помощи зависимостей между числами a и b, их модулями и квадратами…………………………………………………………12

4.2.Использование геометрической интерпретации модуля для решения уравнений…………………………………………………………..14

4.3.Графики простейших функций, содержащих знак абсолютной величины…………………………………………………………..15

4.4.Решение нестандартных уравнений, ………….16

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и. т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, содержащее переменные.

Уравнение с модулем — это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль — абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

3. Доказательство теорем

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна — a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или –a

1. Если число a положительно, то — a отрицательно, т. е. — a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2= ( x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера (и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4 * 15=36 – 60= -24 0

Проверка: |1 – 6|=|12 – 5 * 1 + 9| |3 – 6|=|32 – 5 * 3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпретации модуля для решения уравнений.

Геометрический смысл модуля разности величин — это расстояние между ними. Например, геометрический смысл выражения |x – a | — длина отрезка координатной оси, соединяющей точки с абсциссами а и х. Перевод алгебраической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример 7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпретации модуля.

Читайте также:  Способы решения аварийных ситуаций

Будем рассуждать следующим образом: исходя из геометрической интерпретации модуля, левая часть уравнения представляет собой сумму расстояний от некоторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка — нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпретации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно, решением данного уравнения будет являться не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b >a Û a a Û x

Источник

Реферат: Алгебраическое и графическое решение уравнений, содержащих модули

Цель работы: хотя уравнения с модулями ученики начинают изучать уже с 6-го – 7-го класса, где они проходят самые азы уравнений с модулями. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досканального исследования. Я хочу получить более широкие знания о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, програмировании и других точных науках.

В архитектуре-это исходная еденица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике-это термин, применяемый в различных облостях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, сродержащее переменные.

Уравнение с модулем-это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль-абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

1. Если число a положительно, то -a отрицательно, т. е. -a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2=(x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4  15=36 – 60= -24 02 р.к.

Проверка: |1 – 6|=|12 – 5  1 + 9| |3 – 6|=|32 – 5  3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпритации модуля для решения уравнений.

Геометрический смысл модуля разности величин-это расстояние между ними. Например, геометрический смысл выражения |x – a | -длина отрезка координатной оси, соединяющей точки с абсцисами а и х . Перевод алгеб-раической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпритации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпри-тации модуля, левая часть уравнения представляет собой сумму расстояний от некторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпритации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет являтся не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b  a  a  x  b

|x – a| — |x – b|=b – a, где b  a  x  b

4.3. Графики простейших функций, содержащих знак абсолютной величины

Под простейшими функциями понимают алгебраическую сумму модулей линейных выражений. Сформулируем утверждение, позволяющее строить графики таких функций, не раскрывая модули ( что особенно важно, когда модулей достаточно много ): «Алгебраическая сумма модулей n линейных выражений представляет собой кусочно- линейную функцию, график которой состоит из n +1 прямолинейного отрезка. Тогда график может быть построен по n +2 точкам, n из которых представляют собой корни внутримодульных выражений, ещё одна — произвольная точка с абсциссой, меньшей меньшего из этих корней и последняя — с абсциссой, большей большего из корней.

1)f(x)=|x — 1| Вычисляя функции в точках 1, 0 и 2, получаем график, состоящий из двух отрезков(рис.1)

2) f(x)=|x — 1| + |x – 2| Вычисляя значение функиции в точках с абсциссами 1, 2, 0 и 3, получаем график, состоящий из двух отрезков прямых.(рис.2)

3) f(x)=|x — 1| + |x – 2| + |x – 3| Для построения графика вычислим значения функции в точках 1, 2, 3, 0 и 4 (рис.3)

4) f(x)=|x — 1| — |x – 2| График разности строится аналогично графику суммы, тоесть по точкам 1, 2, 0 и 3.

рис1. рис2. рис3. рис4.

4.4.Решение нестандартных уравнений, содержащих модули.

Пример9. Решить уравнение 3| x + 2 | + x2 + 6x + 2 = 0.

Рассмотрим два случая.

Пример10. Решить уравнение | 4 – x | + | (x – 1)(x – 3) | = 1.

Учитывая, что | 4 – x | = | x – 4 |, рассмотрим четыре случая.

так как

4)

4)

Построим графики функций y = |(x–1)(x–3)| и y=1–|x–4 |

1)в Гy = |(x–1)(x–3)| подставим значение х=1 и х=3. Мы получим у=0,

тоесть пересечение графика с осью ОХ. При х равном нулю у=3, тоесть график пересекается с осью ОУ в точке (0 ;3). И при х=4 у также равен 3- мы получили первый график.

2) y=1–|x–4 | Найдем пересечение с осью ОХ, для этого решим простое уравнение: 1-|x-4|=0

x — 4=1 или x — 4=-1

Следовательно данный график пересекает ось ОХ в точках 5 и 3.

При х=4 у=1 и ак видно из графика: графики обеих функций пересекаются в одной точке 3

Пример11. Решить уравнение | x2 + 3x | = 2(x + 1).

Уравнение равносильно системе

Ответ:

Пример12.Решить уравнение х2 — 4х +|x — 3| +3=0

Для освобождения от знака абсолютной величины разобьем числовую прямую на две области и будем искать решения исходного уравнения в каждой из этих областей отдельно:

__________x 3__________________|____________x 0два различ. корня

x=0 –посторонний корень, так как x1= (5- 1 )/2 =2

не удовлетворяет промежутку. x2=(5 + 1)/2=3

x=3 — посторонний корень, так как

не удовлетворяет промежутку.

Значит, исходное уравнение имеет два решения х1=2 и х2=3

Пример13. Решить уравнение | 2x + 8 | – | x – 5 | = 12.

Раскрытие пары модулей приводит к трем случаям (без x + 4  0, x – 5 0).

Пример 14. Решить уравнение .

Напишем равносильную смешанную систему:

Пример 15 Решить графически уравнение |1 – x| — |2x + 3| + x + 4=0

Представим уравнение в виде |1 – x| — |2x + 3| =-х – 4

Построим два графика у=|1 – x| — |2x + 3| и у=-х – 4

Критические точки: х=1, х=-1.5

(1 – х) ________+________|______ +____________|_____-______ >

а) х 0 и (2х + 3) 0 и (2x +3) 0, т.е функция примет вид

у=1 – х – 2х -3, у=-3х – 2 –графиком является прямая, проходящая через две точки (0; -2), (-1; 1).

в)При х1, (1 – х)0 и (2х + 3)>0, т.е. функция примет вид у= -1 + х – 2х – 3,

у= -х – 4 –графиком является прямая, проходящая через две точки (0; -4),

График функции у= — х – 4 совпадает с графиком у=|1 – x| — |2x + 3|, при х1,

Поэтому решением являются все х1 и х= -4

Построим числовую прямую так, чтобы по определению модуля знак абсолютной величины числа можно будет снять. Для этого найдем критические точки: 1- х=0 и 2х – 3 =0,

Источник

Читайте также:  Замороженные креветки способ приготовления варить
Оцените статью
Разные способы
Название: Алгебраическое и графическое решение уравнений, содержащих модули
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:53:07 24 марта 2007 Похожие работы
Просмотров: 11201 Комментариев: 33 Оценило: 29 человек Средний балл: 4.6 Оценка: 5 Скачать