Решение слау итерационным способом

Итерационные методы решения СЛАУ

Вы будете перенаправлены на Автор24

Для решения систем линейных уравнений используется два основных метода решений, прямые методы, также называемые точными и итерационные методы, при использовании которых ответ в любом случае будет приближённым.

Особенность прямых методов состоит в том, что вычисления в них всегда проводятся точно, например, с использованием целых чисел, но при этом эти методы трудно применимы для вычисления решений для больших систем. К прямому методу относится, например, метод Крамера.

Ниже подробно рассмотрены итерационные методы решения СЛАУ.

Сущность итерационных методов решения систем линейных уравнений

Как уже отмечалось выше, итерационные методы в принципе являются приближёнными. Их сущность состоит в том, что сначала записывается некоторая последовательность столбцов матрицы, после чего производится поочередное вычисление каждого столбца. Каждый новый столбец вычисляется на основе вычисленных предыдущих, при этом с каждым вычислением получается всё более точное приближение искомого решения. Когда достигнута необходимая точность, процесс вычисления прерывают и в качестве решения используют последний вычисленный столбец.

Процесс вычисления одного столбца называется итерацией.

Различают несколько основных способов итерационного решения СЛАУ:

Метод Якоби (метод простых итераций СЛАУ)

Рассмотрим систему уравнений, с коэффициентами, которые можно записать в виде матрицы:

$A=\left(\begin a_ <11>& a_ <12>& … & a_ <1n>\\ a_ <21>& a_ <22>& … & a_ <2n>\\ … & … & … & … \\ a_ & a_ & … & a_ \\ \end\right)$

Саму же систему уравнений можно записать в виде равенства $A \cdot X = F$, где $X$ — вектор-столбец собственных значений системы, а $F$ — вектор-столбец свободных членов.

Метод состоит в том, чтобы в каждом уравнении системы выразить соответственно $x_1, x_2,…, x_n$ и затем получить новую матрицу $B$, у которой элементы главной диагонали принимают нулевые значения.

В общем виде формула для вычисления корней уравнений записывается так: $\overrightarrow= B\overrightarrow + \overrightarrow$

Добиться такого вида от системы можно следующими способами:

Готовые работы на аналогичную тему

$B= E – D^<-1>A=D^<-1>(D-A), \overrightarrow = D^<-1>\overrightarrow;$

Здесь $D$ — матрица, у которой нулевые все элементы, кроме элементов на главной диагонали, а на главной диагонали находятся соответствующие элементы матрицы $A$. Матрицы $U$ и $L$ означают верхнетреугольную матрицу и нижнетреугольную соответственно; их значимые элементы соответствуют частям матрицы $A$. Буквой $Е$ же обозначается единичная матрица соответствующей размерности.

Процедура нахождения корней тогда запишется так:

$\overrightarrow^<(k+1)>= B\overrightarrow^ <(k)>+ \overrightarrow$

Для конкретного элемента она будет выглядеть так:

$x_^=\frac<1>(b_i — \sum\limits_ a_ij\cdot x_j^(k)\left(1\right)$, где $i=1,2,…, n$

буквой $(k)$ во всех формулах выше обозначается номер итерации, сама же формула $(1)$ называется рекуррентной.

Окончание вычисления происходит в том случае, если разница между вычислениями в двух соседних итераций составляет не более чем $ε_1$:

В упрощённой форме условие окончания итераций выглядит как $||x^<(n+1)>-x^<(n)>||$

Порядок решения СЛАУ методом Якоби такой:

  1. Приведение системы уравнений к виду, в котором на каждой строчке выражено какое-либо неизвестное значение системы.
  2. Произвольный выбор нулевого решения, в качестве него можно взять вектор-столбец свободных членов.
  3. Производим подстановку произвольного нулевого решения в систему уравнений, полученную под пунктом 1.
  4. Осуществление дополнительных итераций, для каждой из которых используется решение, полученное на предыдущем этапе.

Метод Гаусса-Зейделя

Сущность этого метода состоит в том, что в нём переносятся в правые части все члены уравнений, индекс при которых больше индекса, выражаемого $x$. В краткой форме это можно записать так:

$(L + D) \cdot \overrightarrow = -U\overrightarrow + \overrightarrow$

Сами итерации в методе Гаусса-Зейделя производятся по формуле:

$(L +D)\overrightarrow^<(k+1)>=-U\overrightarrow^ <(k)>+ \overrightarrow$

Метод Гаусса-Зейделя похож на метод Якоби, но здесь полученные значения переменных используются не исключительно для следующей итерации, а сразу для следующего вычисления значения $x$.

Метод простых итераций: пример решения

Дана система уравнений:

$\begin 10x_1 – x_2 + 2x_3 = 6 \\ -x_1 + 11x_2 – x_3 + 3x_4 = 25 \\ 2x_1- x_2 + 10x_3 -x_4 = -11 \\ 3x_2 – x_3 + 8x_4 = 15 \end$

Читайте также:  Koch mehrzweckreiniger способ применения

Решите данную систему с помощью метода простых итераций.

Выберем в качестве нулевого приближения корни $(0; 0; 0; 0)$ и подставим их в преобразованную систему:

$\begin x_1 = (6 + 0 – (2 \cdot 0))/10 = 0,6 \\ x_2 = (25 + 0 – 0 – (3 \cdot 0))/11 = 25/11 = 2,2727 // x_3 = (-11 – (2 \cdot 0) + 0 + 0) /10 = -1,1 \\ x_4 = (15 – (3 \cdot 0) + 0) / 8 = 1,875\\ \end$

Проведём 5 итераций, используя на каждой результат, полученный с предыдущей и для них получим следующую таблицу:

Рисунок 1. Таблица итераций для решения СЛАУ. Автор24 — интернет-биржа студенческих работ

Продолжать вычисление можно до достижения заданной требуемой точности. Точный ответ системы — $(1; 2; -1; 1)$.

Источник

Решение СЛАУ методом простой итерации

Назначение сервиса . Онлайн-калькулятор предназначен для решения СЛАУ методом простой итерации в онлайн режиме (см. пример решения). Для проверки решения генерируется шаблон в Excel .

  • Шаг №1
  • Шаг №2
  • Видеоинструкция

Рассмотрим достаточные условия сходимости итерационной последовательности n>.
Практически, для применения метода итерации систему линейных уравнений удобно «погрузить» в одну из трёх следующих метрик:
(3.4)
Для того, чтобы отображение F, заданное в метрическом пространстве соотношениями (3.2), было сжимающим, достаточно выполнение одного из следующих условий:
а) в пространстве с метрикой ρ1: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по строкам, должна быть меньше единицы.
б) в пространстве с метрикой ρ2: , т. е. максимальная из сумм модулей коэффициентов в правой части системы (3.2), взятых по столбцам, должна быть меньше единицы.
в) в пространстве с метрикой ρ3: , т. е. сумма квадратов при неизвестных в правой части системы (3.2) должна быть меньше единицы

Пример . Вычислить два приближения методом простой итерации. Оценить погрешность второго приближения. В качестве начального приближения выбрать x 0 =(0; 0; 0).

Так как диагональные элементы системы являются преобладающими, то приведем систему к нормальному виду:

Последовательные приближения будем искать по формулам:

Получаем:
x 1 =(-1.9022; 0.4889; 2.1456), x 2 =(-1.1720; 0.6315; 1.2389).
Для оценки погрешности в метрике ρ1 вычисляем коэффициент μ
.
Вычисляем погрешность:

При большом числе неизвестных схема метода Гаусса, дающая точное решение, становится весьма сложной. В этом случае для решения СЛАУ иногда удобнее пользоваться методом простой итерации.

Метод итераций для системы уравнений в Excel

Для вычисления точности epsilon .
Итерация №1: =ABS(B7)-ABS(B6);=ABS(C7)-ABS(C6);=ABS(D7)-ABS(D6)
Итерация №2: =ABS(B8)-ABS(B7);=ABS(C8)-ABS(C7);=ABS(D8)-ABS(D7)
Скачать шаблон решения.

Источник

Итерационные методы решения системы линейных алгебраических уравнений

В данной статье мы расскажем общие сведения об итерационных методах решения СЛАУ, познакомим с методом Зейделя и Якоби, а также приведем примеры решения систем линейных уравнений при помощи данных методов.

Общие сведения об итерационных методах или методе простой итерации

Метод итерации — это численный и приближенный метод решения СЛАУ.

Суть: нахождение по приближённому значению величины следующего приближения, которое является более точным. Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня x 0 .

Рассмотрим систему A x = b .

Чтобы применить итерационный метод, необходимо привести систему к эквивалентному виду x = B x + d . Затем выбираем начальное приближение к решению СЛАУ x ( 0 ) = ( x 1 0 , x 2 0 , . . . x m 0 ) и находим последовательность приближений к корню.

Для сходимости итерационного процесса является достаточным заданное условие В 1 . Окончание итерации зависит от того, какой итерационный метод применили.

Метод Якоби

Метод Якоби — один из наиболее простых методов приведения системы матрицы к виду, удобному для итерации: из 1-го уравнения матрицы выражаем неизвестное x 1 , из 2-го выражаем неизвестное x 2 и т.д.

Результатом служит матрица В , в которой на главной диагонали находятся нулевые элементы, а все остальные вычисляются по формуле:

b i j = — a i j / a i i , i , j = 1 , 2 . . . , n

Элементы (компоненты) вектора d вычисляются по следующей формуле:

d i = b i / a i i , i = 1 , 2 , . . . , n

Расчетная формула метода простой итерации:

x ( n + 1 ) = B x ( x ) + d

Матричная запись (координатная):

x i ( n + 1 ) = b i 1 x n 1 + b i 2 x ( n ) 2 + . . . + b

Критерий окончания в методе Якоби:

x ( n + 1 ) — x ( n ) ε 1 , где ε 1 = 1 — B B ε

В случае если B 1 / 2 , то можно применить более простой критерий окончания итераций:

x ( n + 1 ) — x ( n ) ε

Решить СЛАУ методом Якоби:

10 x 1 + x 2 — x 3 = 11 x 1 + 10 x 2 — x 3 = 10 — x 1 + x 2 + 10 x 3 = 10

Необходимо решить систему с показателем точности ε = 10 — 3 .

Приводим СЛАУ к удобному виду для итерации:

x 1 = — 0 , 1 x 2 + 0 , 1 x 3 + 1 , 1 x 2 = — 0 , 1 x 1 + 0 , 1 x 3 + 1 x 3 = 0 , 1 x 1 — 0 , 1 x 2 + 1

Выбираем начальное приближение, например: x ( 0 ) = 1 , 1 1 1 — вектор правой части.

В таком случае, первая итерация имеет следующий внешний вид:

x 1 ( 1 ) = — 0 , 1 × 1 + 0 , 1 × 1 + 1 , 1 = 1 , 1 x 2 ( 1 ) = — 0 , 1 × 1 , 1 + 0 , 1 + 1 = 0 , 99 x 3 ( 1 ) = 0 , 1 × 1 , 1 — 0 , 1 × 1 + 1 = 1 , 01

Читайте также:  Укрепления стропильной системы способы

Аналогичным способом вычисляются приближения к решению:

x ( 2 ) = 1 , 102 0 , 991 1 , 011 , x ( 3 ) = 1 , 102 0 , 9909 1 , 0111 , x ( 4 ) = 1 , 10202 0 , 99091 1 , 01111

Находим норму матрицы В , для этого используем норму B ∞ .

Поскольку сумма модулей элементов в каждой строке равна 0,2, то B ∞ = 0 , 2 1 / 2 , поэтому можно вычислить критерий окончания итерации:

x ( n + 1 ) — x ( n ) ε

Далее вычисляем нормы разности векторов:

x ( 3 ) — x ( 2 ) ∞ = 0 , 002 , x ( 4 ) — x ( 3 ) ∞ = 0 , 00002 .

Поскольку x ( 4 ) — x ( 3 ) ∞ ε , то можно считать, что мы достигли заданной точности на 4-ой итерации.

x 1 = 1 , 102 ; x 2 = 0 , 991 ; x 3 = 1 ,01 1 .

Метод Зейделя

Метод Зейделя — метод является модификацией метода Якоби.

Суть: при вычислении очередного ( n + 1 ) — г о приближения к неизвестному x i при i > 1 используют уже найденные ( n + 1 ) — е приближения к неизвестным x 1 , x 2 , . . . , x i — 1 , а не n — о е приближение, как в методе Якоби.

x i ( n + 1 ) = b i 1 x 1 ( n + 1 ) + b i 2 x 2 ( n + 1 ) + . . . + b i , i — 1 x i — 2 ( n + 1 ) + b i , i + 1 x i + 1 ( n ) +

+ . . . + b i m x m ( n ) + d i

За условия сходимости и критерий окончания итераций можно принять такие же значения, как и в методе Якоби.

Решить СЛАУ методом Зейделя. Пусть матрица системы уравнений А — симметричная и положительно определенная. Следовательно, если выбрать начальное приближение, метод Зейделя сойдется. Дополнительных условий на малость нормы некоторой матрицы не накладывается.

Решим 3 системы уравнений:

2 x 1 + x 2 = 3 x 1 — 2 x 2 = 1 , x 1 + 2 x 2 = 3 2 x 1 — x 2 = 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1

Приведем системы к удобному для итерации виду:

x 1 ( n + 1 ) = — 0 , 5 x 2 ( n ) + 1 , 5 x 2 ( n + 1 ) = 0 , 5 x 1 ( n + 1 ) + 0 , 5 , x 1 ( n + 1 ) = — 2 x 2 ( n ) + 3 x 2 ( n + 1 ) = 2 x 1 ( n + 1 ) — 1 , 2 x 1 — 0 , 5 x 2 = 3 2 x 1 + 0 , 5 x 2 = 1 .

Отличительная особенность, условие сходимости выполнено только для первой системы:

Вычисляем 3 первых приближения к каждому решению:

1-ая система: x ( 0 ) = 1 , 5 — 0 , 5 , x ( 1 ) = 1 , 75 0 , 375 , x ( 2 ) = 1 , 3125 0 , 1563 , x ( 3 ) = 1 , 4219 0 , 2109

Решение: x 1 = 1 , 4 , x 2 = 0 , 2 . Итерационный процесс сходится.

2-ая система: x ( 0 ) = 3 — 1 , x ( 1 ) = 5 9 , x ( 2 ) = — 15 — 31 , x ( 3 ) = 65 129

Итерационный процесс разошелся.

Решение: x 1 = 1 , x 2 = 2

3-я система: x ( 0 ) = 1 , 5 2 , x ( 1 ) = 2 — 6 , x ( 2 ) = 0 2 , x ( 3 ) = 0 2

Итерационный процесс зациклился.

Решение: x 1 = 1 , x 1 = 2

Метод простой итерации

Если А — симметричная и положительно определенная, то СЛАУ приводят к эквивалентному виду:

x = x — τ ( A x — b ) , τ — итерационный параметр.

Расчетная формула имеет следующий внешний вид:

x ( n + 1 ) = x ( n ) — τ ( A x n — b ) .

Здесь B = E — τ A и параметр τ > 0 выбирают таким образом, чтобы по возможности сделать максимальной величину B 2 .

Пусть λ m i n и λ m a x — максимальные и минимальные собственные значения матрицы А .

τ = 2 / ( λ m i n + λ m a x ) — оптимальный выбор параметра. В этом случае B 2 принимает минимальное значение, которое равняется ( λ m i n + λ m a x ) / ( λ m i n — λ m a x ) .

Источник

Решение слау итерационным способом

БлогNot. Основные прямые и итерационные методы решения СЛАУ в MathCAD

Основные прямые и итерационные методы решения СЛАУ в MathCAD

Как известно, решение систем линейных алгебраических уравнений (СЛАУ) — весьма распространённый на практике тип задач. Теорию можно почитать по ссылке, а здесь приведём основные расчёты как для прямых (аналитических), так и для итерационных (приближённых) методов решения СЛАУ.

Начнём с прямых. Классический метод обратной матрицы в MathCAD легко реализовать с помощью стандартной функции lsolve или же посредством операции обращения матрицы, код приводить не будем из-за его тривиальности.

Уже двое спросили «а как всё же найти решение методом обратной матрицы?» 🙂
Введя данные, как на картинке ниже, под данными написать одну из формул x:=A -1 *b или x:=lsolve(A,b)
Затем ещё ниже сделать x=

А вот метод Крамера запрограммируем. Элемент вектора решения xi в нём получается в виде дроби, знаменателем которой является определитель матрицы системы, а числителем – определитель матрицы Ai , полученной из исходной заменой i-го столбца столбцом свободных членов b . Для удобства будем во всём документе нумеровать строки и столбцы матриц с единицы, то есть, установим значение системной переменной ORIGIN:=1 . Также определим общие для всех методов матрицу и вектор правой части системы:

Условием существования и единственности решения СЛАУ во всех случаях является условие det A≠0 , т.е., определитель матрицы A не равен нулю. Также имеет смысл сделать проверку полученного решения, посчитав значение невязки, равное норме разности векторов A*x ( x — найденное решение) и b . В идеале невязка должна быть равной нулю, но из-за неизбежного накопления погрешностей операций над вещественными числами она окажется равна малому числу ε , соответствующему погрешности метода. В MathCAD скалярный оператор «модуль» с панели инструментов калькулятора в применении к разности векторов даст как раз значение невязки, проверим это утверждение на небольшом тесте:

С учётом всего сказанного, реализуем метод Крамера и проверку полученного решения:

В теле функции det оператор |A| — это не модуль числа с панели «Калькулятор», а похожая внешне кнопка «Определитель» с панели «Матрицы»!

Классический метод Гаусса с приведением матрицы к верхнему треугольному виду подробно изучается в базовом курсе высшей математики. Реализуем самую простую его разновидность, выбирающую ведущий элемент на главной диагонали матрицы, то есть, работающую в предположении, что значение A1,1,≠0 . Так как эта подпрограмма «нулевого» уровня, назовём её Gauss0 , а более сложную Gauss напишем отдельно.

Читайте также:  Распространенный способ обеспечения исполнения обязательства

Для удобства вектор правой части b записан как (n+1) -й столбец матрицы A , такую матрицу системы называют расширенной.

Реализация более «полноценного» метода Гаусса с выбором ведущего элемента (и перестановкой при необходимости строк матрицы) выполнена в приложенном к статье документе MathCAD, по крайней мере, систему с нулями на главной диагонали матрицы подпрограмма Gauss решила. Её дополнительный параметр — погрешность ε , начиная с которой значение |Ai,j| считается равным нулю. В случае ошибки (нет решения) подпрограмма возвращает вектор из n значений «бесконечность».

На практике нетрудно увидеть общие для всех прямых методов недостатки подхода — трудоёмкость вычислений, требующая брать обратные матрицы или считать определители, следующее из неё довольно быстрое накопление погрешности, наконец, невозможность найти решение с заранее заданной, а не заложенной в алгоритм точностью.

В определённой мере избежать этих недостатков позволяют итерационные методы, последовательно приближающие решение формулами вида xi (k+1) = f(xi (k) ) , где k=0,1. — номер шага, до тех пор, пока выбранная мера разности между двумя соседними векторами приближениямй |x (k+1) -x (k) | не станет меньше заданного малого значения ε . В простейшем случае решение СЛАУ с матрицей размерности 2*2 методом простых итераций будет выглядеть так:

Все неизвестные значения xi присутствуют и в левой, и в правой частях новых уравнений. Выбрав некоторый вектор начального приближения x (0) , посчитаем по нему новое приближение x (1) , затем подставим его в правые части уравнений и посчитаем x (2) и т.д. до выполнения условия сходимости. А оно, кстати, довольно просто — метод Якоби сходится, если матрица системы имеет диагональное преобладание, то есть, на главной диагонали находятся наибольшие в своих строках элементы. Наша тестовая матрица уже имеет диагональное преобладание, а в большинстве других случаев этого можно добиться, выполняя преобразования над уравнениями системы, подобные тем, что делает расширенная процедура Gauss .

Выбор вектора начального приближения x (0) на практике также обычно прост, принимают x (0) =b , то есть, вектору правой части системы. Можно и просто «занулить» вектор x (0) .

Приходим к следующей процедуре решения:

Обратите внимание, что нам пришлось «схитрить» при расчёте сумм s1 и s2 — MathCAD просто не сможет вычислить сумму с нижним пределом суммирования =1 и верхним =0 (или нижним n и верхним n-1 ). По той же причине дополнительные проверки сделаны и в процедуре Gauss .

В основной «бесконечный» цикл подпрограммы имеет смысл добавить аварийный выход оператором break , например, по выполнении 10000 шагов.

Также, в этом и следующем методе в строчке с break точнее был бы критерий выхода |max(x1-x0)|≤ε , где | | — значок модуля числа с панели калькулятора.

Итерационный метод Гаусса-Зейделя отличается от метода простых итераций лишь тем, что для подсчета i –й компоненты (k+1) –го приближения к искомому вектору решения используются уже вычисленные на этом, т.е., (k+1) –м шаге новые значения первых i–1 компонент. а не просто берётся вектор x0 целиком с предыдущего шага. В нашей подпрограмме достаточно заменить x0 на x1 в операторе расчёта суммы s1 🙂 У меня точность решения на использованном тесте выросла при этом вчетверо.

Метод Якоби является вариантом метода простых итераций, в котором используемые в итерационной процедуре матрица C и вектор β определяются по формулам

Вот расчёт методом Якоби с критерием выхода «максимальный модуль разности между проекциями x1 (k) i и x0 (k) i стал меньше либо равен заданной точности ε :

При расчёте r применены операторы «Векторизовать» с панели «Матрицы» и «Модуль» с Калькулятора, а при расчёте элементов С и β деление выполнено «в строчку» для экономии места.

Прямые и итерационные методы решения СЛАУ: скачать документ .xmcd Mathcad 14/15 в архиве .zip (78 Кб)

P.S. И ещё про прямые «гауссоподобные» методы решения СЛАУ. Если Вам нужно не пошаговое программирование, а достаточно применения стандартных функций, есть способ проще. С помощью стандартной функции augment можно получить расширенную матрицу системы (поставив «рядом» матрицу A и вектор b ), а с помощью rref привести матрицу к ступенчатому виду с единичным базисным минором. Потом останется извлечь решение с помощью метода submatrix (последний столбец матрицы, которую вернул метод rref ).

Норма вектора |A*x-b| , как и другие нормы в статье, берётся кнопкой |x| с Калькулятора, а не похожей на неё кнопкой с панели «Матрицы».

Источник

Оцените статью
Разные способы