Решение систем уравнений с двумя переменными графическим способом 9 класс

Системы уравнений с двумя переменными

п.1. Понятие системы уравнений с двумя переменными и её решения

п.2. Графический метод решения системы уравнений с двумя переменными

Поскольку каждое из уравнений с двумя переменными можно изобразить в виде графика на плоскости, графический метод решения систем таких уравнений достаточно удобен.

п.3. Примеры

Пример 1. Решите графическим способом систему уравнений:
а) \( \left\< \begin < l >\mathrm & \\ \mathrm <4x+3y=0>& \end\right. \)
\( \mathrm \) – окружность с центром в начале координат
\( \mathrm <4x+3y=0>\) – прямая \( \mathrm \)

Система имеет два решения (–3; 4) и (3; –4)
Ответ: <(–3; 4) ; (3; –4)>.

б) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
\( \mathrm \) – гипербола \( \mathrm \)
y – x = 4 – прямая y = x + 4

Система имеет два решения (–5; –1) и (1; 5)
Ответ: <(–5; –1) ; (1; 5)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
x 2 + y = 1 – парабола y = –x 2 + 1
x 2 – y = 7 – парабола y = x 2 – 7

Система имеет два решения (–2; –3) и (2; –3)
Ответ: <(–2; –3) ; (2; –3)>.

г) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
xy = 1 – гипербола \( \mathrm \)
x 2 + y 2 = 2 – окружность с центром в начале координат, радиусом \( \mathrm<\sqrt<2>> \)

Система имеет два решения (–1; –1) и (1; 1)
Ответ: <(–1; –1) ; (1; 1)>.

Пример 2*. Решите графическим способом систему уравнений
a) \( \left\< \begin < l >\mathrm & \\ \mathrm <\frac1x-y=1>& \end\right. \)
x 3 – y = 1 – кубическая парабола y = x 3 – 1, смещённая на 1 вниз.
\( \mathrm <\frac1x-y=1>\) – гипербола \( \mathrm \), смещённая на 1 вниз

Система имеет два решения (–1; –2) и (1; 0)
Ответ: <(–1; –2) ; (1; 0)>.

б) \( \left\< \begin < l >\mathrm <|x|+|y|=2>& \\ \mathrm & \end\right. \)
|x| + |y| = 2 – квадрат с диагоналями 4, лежащими на осях
x 2 + y 2 = 4 – окружность с центром в начале координат, радиусом 2

Система имеет четыре решения (2; 0), (0; 2) , (–2; 0) и (0; –2)
Ответ: <(2; 0) ; (0; 2) ; (–2; 0) ; (0; –2)>.

в) \( \left\< \begin < l >\mathrm & \\ \mathrm & \end\right. \)
y – x 2 = 4x + 6 – парабола y = (x 2 + 4x + 4) + 2 = (x + 2) 2 + 2, ветками вверх, смещённая на 2 влево и на 2 вверх
y + |x| = 6 – ломаная, y = –|x| + 6. Для x > 0, y = –x + 6, для x 0, y = x, для x

Читайте также:  Способ соединения безраструбный раструбный

Источник

Алгебра. 9 класс

Вспомним основные понятия.

Решение уравнения с двумя переменными – это пара значений переменных, которая обращает это уравнение в верное равенство.

Решение системы уравнений с двумя переменными – это пара значений переменных, которая обращает каждое уравнение системы в верное равенство.

Решить систему уравнений – это значит найти все её решения, или убедиться, что общих решений у исходных уравнений нет.

Чтобы решить систему уравнений графическим способом нужно построить графики уравнений, входящих в систему, на одной координатной плоскости и найти точки их пересечения.

Вспомним основные виды графиков.

y = kx + b, где k и b – некоторые числа

, где a, b, c и d – некоторые числа, с ≠ 0, adbc ≠ 0

, где n – некоторое чётное число

, где n – некоторое нечётное число

y = x n , где n – некоторое чётное число

y = x n , где n – некоторое нечётное число

Решим несколько задач.

Решите графическим способом систему уравнений

Приведём уравнения к виду, удобному для построения графиков.

Сначала первое уравнение:
x 2 + y 2 = 5 + 2x + 4y;
x 2 – 2x + 1 – 1 + y 2 – 4y + 4 – 4 = 5;
(x – 1) 2 + (y – 2) 2 – 5 = 5;
(x – 1) 2 + (y – 2) 2 = 10.

Теперь второе уравнение:
2x = y – 5;
y = 2x + 5.

Теперь построим графики уравнений на одной координатной плоскости.

Используя чертёж найдем координаты точек пересечения графиков. Получим две точки: А(0; 5) и B(–2; 1).

Подставим найденные значения переменных, чтобы убедиться, что мы нашли точные, а не приближённые решения системы.

Определите, сколько решений может иметь система уравнений в зависимости от значений b

Графиком первого уравнения системы является парабола с вершиной в точке (0; –3).

Графиком второго уравнения системы является окружность с центром в точке (0; 0) и радиусом b.

Построим в одной системе координат график первого уравнения и возможные варианты графика второго уравнения, начиная с маленького радиуса окружности и постепенно его увеличивая.

Таким образом, в зависимости от значения b система может не иметь решений, может имеет 2, 3 или 4 решения.

Источник

Урок по математике для 9 класса «Графический способ решения систем уравнений»

Выбранный для просмотра документ А — 9 , графическое решение систем уравнений.ppt

Описание презентации по отдельным слайдам:

Графический способ решения систем уравнений. МБОУ СОШ №17 Учитель Котлячкова О.Н.

Ум заключается не только в знании, но и в умении прилагать знания на деле Аристотель (384 до н. э.— 322 до н.э.), древнегреческий учёный,философ, учитель Александра Македонского

3х+2у=18 Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение. ●(4; 3)

Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение. ●(1; 2) (– 1;– 2)●

Читайте также:  Как легко сбросить вес алан карр легкий способ

Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение. ● ● ●

Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение. ●(1; 3) (– 1; 3) ●

Строим в одной системе координат графики уравнений системы А теперь самостоятельно определите решения системы.

Выбранный для просмотра документ откр урок 9 кл.doc

Графический способ решения систем уравнений

Учебник: Алгебра, 9 класс, под редакцией Теляковского С.А.

Тип урока: урок комплексного применения знаний, умений, навыков.

Образовательные: Выработать умение самостоятельно применять знания в комплексе, переносить их в новые условия, в том числе работать с компьютерной программой для построения графиков функции и нахождения количества корней в заданных уравнениях.

Развивающие: Формировать у учащихся умение выделять основные признаки, устанавливать сходства и различия. Обогащать словарный запас. Развивать речь, усложняя её смысловую функцию. Развивать логическое мышление, познавательный интерес, культуру графического построения, память, любознательность.

Воспитательные: Воспитывать чувство ответственности за результат своего труда. Учить сопереживать успехам и неудачам одноклассников.

Средства обучения : компьютер, мультимедийный проектор, раздаточный материал.

Организационный момент. Домашнее задание – 2 мин.

Актуализация, повторение, коррекция знаний — 8 мин.

Изучение нового материала – 10 мин.

Практическая работа – 20 мин.

Подведение итогов – 4 мин.

Рефлексия – 1 мин.

Организационный момент – 2 мин.

Здравствуйте, ребята! Сегодня урок по важной теме: «Решение систем уравнений».

Нет таких областей знаний в точных науках, где бы ни применялась данная тема. Эпиграфом к нашему уроку являются следующие слова: «Ум заключается не только в знании, но и в умении прилагать знания на деле». (Аристотель)

Постановка темы, целей и задач урока.

Учитель сообщает классу о том, что на уроке будет изучаться и ставит задачу научиться решать системы уравнений с двумя переменными графическим способом.

Задание на дом (П.18 № 416, 418, 419 а).

Повторение теоретического материала – 8 мин.

А) Учитель математики: По готовым чертежам ответить на вопросы и обосновать свой ответ.

1). Найти график квадратичной функции D =0 (Учащиеся отвечают на вопрос и называют график 3в).

2). Найти график обратно — пропорциональной функции при k >0 (Учащиеся отвечают на вопрос, называют график 3 a ).

3). Найти график окружности с центром O (-1; -5). (Учащиеся отвечают на вопрос, называют график 1б).

4). Найти график функции y =3 x -2. (Учащиеся отвечают на вопрос и называют график 3б).

5). Найти график квадратичной функции D >0, a >0. (Учащиеся отвечают на вопрос и называют график 1 a ).

Учитель математики: Для того, что бы успешно решать системы уравнений, давайте вспомним:

Читайте также:  Способы формирования гражданской идентичности

1). Что называется системой уравнений? (Системой уравнений называется несколько уравнений, для которых требуется найти значения неизвестных, удовлетворяющих одновременно всем этим уравнениям).

2). Что значит решить систему уравнений? (Решить систему уравнений, значит найти все решения или доказать, что решений нет).

3). Что называется решением системы уравнений? (Решением системы уравнений называют пару чисел (x; у), при которой все уравнения системы обращаются в верные равенства).

4) Выясните, является ли решением системы уравнений пара чисел: а) х = 1, у = 2; (–) б) х = 2, у = 4; (+) в) х = – 2, у = – 4? (+)

III Новый материал – 10 мин.

П.18 учебника излагается методом беседы.

Учитель математики: В курсе алгебры 7 класса мы рассматривали системы уравнений первой степени. Теперь займёмся решением систем, составленных из уравнений первой и второй степени.

1.Что называется системой уравнений?

2.Что значит решить систему уравнений?

Мы знаем, что алгебраический способ позволяет находить точные решения системы, а графический способ позволяет наглядно увидеть, сколько корней имеет система и найти их приблизительно. Поэтому учиться решать системы уравнений второй степени мы продолжим на следующих уроках, а сегодня основной целью урока будет практическое применение компьютерной программы для построения графиков функции и нахождения количества корней систем уравнений.

IV . Практическая работа – 20 мин. Решение систем уравнений графическим способом. Определение корней уравнений. (Построение графика на компьютере.)

Задания выполняются учащимися на компьютерах. Решения проверяются во время работы.

Уравнения для 1-й группы учащихся:

Уравнения для 2-й группы учащихся:

Уравнения для 3-й группы учащихся:

y = 2 x 2 + 5 x +3

y = -2 x 2 +5х+3

y = 4 x 2 + 5 x +3

y = -4 x 2 -5х-3

y = 4 x 2 + 5 x +5

Перед Вами графики двух уравнений. Запишите систему, определяемую этими уравнениями, и её решение.

– Какие из перечисленных систем можно решать с помощью данного рисунка?

– Были даны 4 системы, их нужно было соотнести с графиками. Сейчас задание обратное: есть графики, их нужно соотнести с системой.

Подведение итогов урока. Выставление оценок– 4 мин.

* Решение систем уравнений. (Задания со звёздочкой*.)

Уравнения для 1-й группы учащихся:

Уравнения для 2-й группы учащихся:

Уравнения для 3-й группы учащихся:

Уравнения для 4-й группы учащихся:

Уравнения для 5-й группы учащихся:

Уравнения для 6-й группы учащихся:

VI . Рефлексия – 1 мин.

ОЦЕНИТЕ ВАШУ РАБОТУ НА УРОКЕ

ВЫБЕРИТЕ ЭМОЦИОНАЛЬНУЮ СОСТАВЛЯЮЩУЮ УРОКА

НАСКОЛЬКО ВЫ ОЦЕНИВАЕТЕ УСВОЕНИЕ ВАМИ ДАННОЙ ИНФОРМАЦИИ

1 ВОПРОС: 123-НЕЗНАЧИТЕЛЬНО, 456- В БОЛЬШЕЙ СТЕПЕНИ, 789- ПОЛНОЕ ВКЛЮЧЕНИЕ, 10- АБСОЛЮТНОЕ ВКЛЮЧЕНИЕ.

2 ВОПРОС: 123- НИЗКИЙ, 456- СРЕДНИЙ, 789- ДОСТИГ MAX — ЗНАНИЙ, ВЫСОЧАЙШИЙ.

Источник

Оцените статью
Разные способы