Решение примеров удобным способом правило

Свойства сложения и вычитания

О чем эта статья:

Свойства сложения

Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число

Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.

Слагаемые — это числа, единицы которых складываются.

Сумма — это число, которое получается в результате сложения.

Рассмотрим пример 2 + 5 = 7, в котором:

  • 2 — это первое слагаемое,
  • 5 — второе слагаемое,
  • 7 — это сумма.

При этом саму запись (2 + 5) можно тоже назвать суммой.

Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.

Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.

  1. Переместительное свойство сложения
    От перестановки мест слагаемых сумма не меняется.
    a + b = b + a
  2. Сочетательное свойство сложения
    Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа.
    (a + b) + c = a + (b + c)
  3. Свойство нуля при сложении
    Если к числу прибавить нуль, получится само число.
    a + 0 = 0 + a = a

Свойства вычитания

Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.

Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.

Уменьшаемое — это число, из которого вычитают.

Вычитаемое — это число, которое вычитают.

Разность — это число, которое получается в результате вычитания.

Рассмотрим пример 9 — 4 = 5, в котором:

  • 9 — это уменьшаемое,
  • 4 — вычитаемое,
  • 5 — разность.

    При этом саму запись (9 — 4) тоже можно назвать разностью.

    1. Свойство нуля при вычитании
      Если из числа вычесть нуль, получится само число.
      a — 0 = a
      Если из числа вычесть само число, то получится нуль.
      a — a = 0
    2. Свойство вычитания суммы из числа
      Чтобы вычесть сумму из числа, можно вычесть из этого числа одно слагаемое, из полученной разности — второе слагаемое.
      a — (b + c) = a — b — c
    3. Свойство вычитания числа из суммы
      Чтобы вычесть число из суммы, можно вычесть его из одного слагаемого, а к результату прибавить оставшееся слагаемое.
      (a + b) — c = (a — c) + b (если a > c или а = с)
      (a + b) — c = (b — c) + a (если b > c или b = с)

    Примеры использования свойств сложения и вычитания

    Мы узнали основные свойства сложения и вычитания — осталось попрактиковаться. Чтобы ничего не забыть, используйте эту шпаргалку:

    Пример 1

    Вычислить сумму слагаемых с использованием разных свойств:

    а) 4 + 3 + 8 = (4 + 3) + 8 = 7 + 8 = 15

    б) 9 + 11 + 2 = (9 + 2) + 11 = 11 + 11 = 22

    в) 30 + 0 + 13 = 30 + 13 = 43

    Пример 2

    Применить разные свойства при вычислении разности:

    а) 25 — 0 — 2 = 25 — 2 = 23

    б) 18 — (1 + 4) = 18 — 1 — 4 = 17 — 4 = 13

    Пример 3

    Найти значение выражения удобным способом:

    а) 11 + 10 + 3 + 9 = (11 + 10) + (3 + 9) = 21 + 11 = 32

    б) 16 — (4 + 3) + 7 = 16 — 4 — 3 + 7 = (16 — 4) — 3 + 7 = 12 — 3 + 7 = 9 + 7 = 16

    Источник

    Порядок выполнения действий, правила, примеры

    Когда мы работаем с различными выражениями, включающими в себя цифры, буквы и переменные, нам приходится выполнять большое количество арифметических действий. Когда мы делаем преобразование или вычисляем значение, очень важно соблюдать правильную очередность этих действий. Иначе говоря, арифметические действия имеют свой особый порядок выполнения.

    Читайте также:  Деятельность как способ существования людей лекция

    В этой статье мы расскажем, какие действия надо делать в первую очередь, а какие после. Для начала разберем несколько простых выражений, в которых есть только переменные или числовые значения, а также знаки деления, умножения, вычитания и сложения. Потом возьмем примеры со скобками и рассмотрим, в каком порядке следует вычислять их. В третьей части мы приведем нужный порядок преобразований и вычислений в тех примерах, которые включают в себя знаки корней, степеней и других функций.

    Порядок вычисления простых выражений

    В случае выражений без скобок порядок действий определяется однозначно:

    1. Все действия выполняются слева направо.
    2. В первую очередь мы выполняем деление и умножение, во вторую – вычитание и сложение.

    Смысл этих правил легко уяснить. Традиционный порядок записи слева направо определяет основную последовательность вычислений, а необходимость сначала умножить или разделить объясняется самой сутью этих операций.

    Возьмем для наглядности несколько задач. Мы использовали только самые простые числовые выражения, чтобы все вычисления можно было провести в уме. Так можно быстрее запомнить нужный порядок и быстро проверить результаты.

    Условие: вычислите, сколько будет 7 − 3 + 6 .

    Решение

    В нашем выражении скобок нет, умножение и деление также отсутствуют, поэтому выполняем все действия в указанном порядке. Сначала вычитаем три из семи, затем прибавляем к остатку шесть и в итоге получаем десять. Вот запись всего решения:

    7 − 3 + 6 = 4 + 6 = 10

    Ответ: 7 − 3 + 6 = 10 .

    Условие: в каком порядке нужно выполнять вычисления в выражении 6 : 2 · 8 : 3 ?

    Решение

    Чтобы дать ответ на этот вопрос, перечитаем правило для выражений без скобок, сформулированное нами до этого. У нас здесь есть только умножение и деление, значит, мы сохраняем записанный порядок вычислений и считаем последовательно слева направо.

    Ответ: сначала выполняем деление шести на два, результат умножаем на восемь и получившееся в итоге число делим на три.

    Условие: подсчитайте, сколько будет 17 − 5 · 6 : 3 − 2 + 4 : 2 .

    Решение

    Сначала определим верный порядок действий, поскольку у нас здесь есть все основные виды арифметических операций – сложение, вычитание, умножение, деление. Первым делом нам надо разделить и умножить. Эти действия не имеют приоритета друг перед другом, поэтому выполняем их в написанном порядке справа налево. То есть 5 надо умножить на 6 и получить 30 , потом 30 разделить на 3 и получить 10 . После этого делим 4 на 2 , это 2 . Подставим найденные значения в исходное выражение:

    17 − 5 · 6 : 3 − 2 + 4 : 2 = 17 − 10 − 2 + 2

    Здесь уже нет ни деления, ни умножения, поэтому делаем оставшиеся вычисления по порядку и получаем ответ:

    17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

    Ответ: 17 − 5 · 6 : 3 − 2 + 4 : 2 = 7 .

    Пока порядок выполнения действий не заучен твердо, можно ставить над знаками арифметических действий цифры, означающие порядок вычисления. Например, для задачи выше мы могли бы записать так:

    .

    Если у нас есть буквенные выражения, то с ними мы поступаем точно так же: сначала умножаем и делим, затем складываем и вычитаем.

    Что такое действия первой и второй ступени

    Иногда в справочниках все арифметические действия делят на действия первой и второй ступени. Сформулируем нужное определение.

    К действиям первой ступени относятся вычитание и сложение, второй – умножение и деление.

    Зная эти названия, мы можем записать данное ранее правило относительно порядка действий так:

    В выражении, в котором нет скобок, сначала надо выполнить действия второй ступени в направлении слева направо, затем действия первой ступени (в том же направлении).

    Порядок вычислений в выражениях со скобками

    Скобки сами по себе являются знаком, который сообщает нам нужный порядок выполнения действий. В таком случае нужное правило можно записать так:

    Читайте также:  Какие двигателя бывают по способу смесеобразования

    Если в выражении есть скобки, то первым делом выполняется действие в них, после чего мы умножаем и делим, а затем складываем и вычитаем по направлению слева направо.

    Что касается самого выражения в скобках, его можно рассматривать в качестве составной части основного выражения. При подсчете значения выражения в скобках мы сохраняем все тот же известный нам порядок действий. Проиллюстрируем нашу мысль примером.

    Условие: вычислите, сколько будет 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 .

    Решение

    В данном выражении есть скобки, поэтому начнем с них. Первым делом вычислим, сколько будет 7 − 2 · 3 . Здесь нам надо умножить 2 на 3 и вычесть результат из 7 :

    7 − 2 · 3 = 7 − 6 = 1

    Считаем результат во вторых скобках. Там у нас всего одно действие: 6 − 4 = 2 .

    Теперь нам нужно подставить получившиеся значения в первоначальное выражение:

    5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 5 + 1 · 2 : 2

    Начнем с умножения и деления, потом выполним вычитание и получим:

    5 + 1 · 2 : 2 = 5 + 2 : 2 = 5 + 1 = 6

    На этом вычисления можно закончить.

    Ответ: 5 + ( 7 − 2 · 3 ) · ( 6 − 4 ) : 2 = 6 .

    Не пугайтесь, если в условии у нас содержится выражение, в котором одни скобки заключают в себе другие. Нам надо только применять правило выше последовательно по отношению ко всем выражениям в скобках. Возьмем такую задачу.

    Условие: вычислите, сколько будет 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) .

    Решение

    У нас есть скобки в скобках. Начинаем с 3 + 1 + 4 · ( 2 + 3 ) , а именно с 2 + 3 . Это будет 5 . Значение надо будет подставить в выражение и подсчитать, что 3 + 1 + 4 · 5 . Мы помним, что сначала надо умножить, а потом сложить: 3 + 1 + 4 · 5 = 3 + 1 + 20 = 24 . Подставив найденные значения в исходное выражение, вычислим ответ: 4 + 24 = 28 .

    Ответ: 4 + ( 3 + 1 + 4 · ( 2 + 3 ) ) = 28 .

    Иначе говоря, при вычислении значения выражения, включающего скобки в скобках, мы начинаем с внутренних скобок и продвигаемся к внешним.

    Допустим, нам надо найти, сколько будет ( 4 + ( 4 + ( 4 − 6 : 2 ) ) − 1 ) − 1 . Начинаем с выражения во внутренних скобках. Поскольку 4 − 6 : 2 = 4 − 3 = 1 , исходное выражение можно записать как ( 4 + ( 4 + 1 ) − 1 ) − 1 . Снова обращаемся к внутренним скобкам: 4 + 1 = 5 . Мы пришли к выражению ( 4 + 5 − 1 ) − 1 . Считаем 4 + 5 − 1 = 8 и в итоге получаем разность 8 — 1 , результатом которой будет 7 .

    Порядок вычисления в выражениях со степенями, корнями, логарифмами и иными функциями

    Если у нас в условии стоит выражение со степенью, корнем, логарифмом или тригонометрической функцией (синусом, косинусом, тангенсом и котангенсом) или иными функциями, то первым делом мы вычисляем значение функции. После этого мы действуем по правилам, указанным в предыдущих пунктах. Иначе говоря, функции по степени важности приравниваются к выражению, заключенному в скобки.

    Разберем пример такого вычисления.

    Условие: найдите, сколько будет ( 3 + 1 ) · 2 + 6 2 : 3 − 7 .

    Решение

    У нас есть выражение со степенью, значение которого надо найти в первую очередь. Считаем: 6 2 = 36 . Теперь подставим результат в выражение, после чего оно примет вид ( 3 + 1 ) · 2 + 36 : 3 − 7 .

    Дальше действуем по знакомому алгоритму: считаем, сколько у нас получится в скобках, потом в оставшемся выражении выполняем умножение и деление, а следом – сложение и вычитание.

    ( 3 + 1 ) · 2 + 36 : 3 − 7 = 4 · 2 + 36 : 3 − 7 = 8 + 12 − 7 = 13

    Ответ: ( 3 + 1 ) · 2 + 6 2 : 3 − 7 = 13 .

    В отдельной статье, посвященной вычислению значений выражений, мы приводим и другие, более сложные примеры подсчетов в случае выражений с корнями, степенью и др. Рекомендуем вам с ней ознакомиться.

    Источник

    Математика. 3 класс

    Конспект урока

    Математика, 3 класс

    Урок № 57. Разные способы вычислений.

    Перечень вопросов, рассматриваемых в теме:

    Как выполнять устно вычисления в случаях, сводимых к действиям в пределах 1000, используя различные приёмы устных вычислений?

    Как выбирать удобный способ?

    Как выполнять проверку вычислений?

    Глоссарий по теме:

    Круглым называется число, которое делится на 10, 100, 1000 и так далее, без остатка.

    Каждая цифра в записи многозначного числа занимает определённое место – позицию. Место (позицию) в записи числа, на котором стоит цифра, называют разрядом.

    Читайте также:  Mega gainer maxler способ применения

    Единицы, десятки, сотни, тысячи и т. д. иначе ещё называют разрядными единицами:
    единицы называют единицами 1-го разряда
    десятки называют единицами 2-го разряда
    сотни называют единицами 3-го разряда и т. д.

    Сложение – арифметическое действие в математике, в результате которого два или более чисел объединяется в единое целое, оно обозначается знаком «+». Слагаемое, слагаемое, сумма – главные составляющие математического действия сложения.

    Вычитание – арифметическое действие, обратное сложению и обозначается оно знаком «-». Уменьшаемое, вычитаемое, разность- главные составляющие математического действия вычитания.

    Основная и дополнительная литература по теме урока:

    Моро М.И. Учебник для 3 класса четырехлетней начальной школы. М. «Просвещение» — 2017. С. 68-69

    Волкова С.И. математика. Проверочные работы. 3 кл. — М.: Просвещение, 2018.С. 72-73

    Рудницкая В.Н. Математика. Дидактические материалы. Ч.1. 3 кл. – М. «Вентана- Граф», 2016, с. 9-12

    Теоретический материал для самостоятельного изучения

    Вам уже знакомы приёмы устных вычислений в пределах 1000.

    Но наша цель не просто узнать о них, а уверенно ими пользоваться.

    Часто ученики допускают ошибки при решении примеров.

    Сегодня мы более подробно остановимся на таких случаях и разберемся, как их избежать

    Надеюсь, что после урока вы даже сможете посоревноваться с друзьями в устном счёте.

    Вспомним приёмы устных вычислений, с которыми познакомились на прошлом уроке.

    работаем с разрядными слагаемыми

    работаем с общим количеством десятков.

    Чтобы быстро и правильно решать такие примеры надо уметь выбирать более удобный способ.

    А как выбрать удобный способ?

    Выберем из этих примеров те, которые удобнее решать, работая с разрядными слагаемыми.

    Согласитесь, что эти примеры будет легко решить, представив одно из слагаемых в виде суммы разрядных слагаемых.

    Например: 420 + 50, десятки сложим с десятками и прибавим сотни, а при решении примера 320 + 500 сложим сотни и прибавим десятки.

    Что же не так с остальными примерами?

    Внимательно посмотри на числа. При выполнении действий с десятками происходит переход через разряд. Это вызывает затруднения.

    Именно поэтому здесь удобнее воспользоваться вторым способом – работать с общим количеством десятков.

    Рассмотрим первый пример: 150 — 90

    Пользуясь первым способом, нам пришлось бы из 50 вычитать 90, а это невозможно.

    Приходит на помощь второй способ:

    15 дес. — 9 дес. это 6 дес. или 60. Никаких проблем.

    Тоже самое с остальными примерами.

    Но есть ещё одна опасность при решении подобных примеров на вычитание.

    Рассмотрим два примера:

    560 — 300 и 600 — 240.

    Обрати внимание, в первом примере десятки в уменьшаемом, а во втором — в вычитаемом.

    На это очень важно обращать внимание!

    Понаблюдаем за решением.

    560 — 300 = (500 — 300) + 60 = 260

    600 — 240 = (600 — 200) — 40 = 360

    В первом случае десятки прибавляем, а во втором вычитаем. Так как в первом случае вычитаем только сотни – 300, а во втором – сотни и десятки — 240

    Если же ты сомневаешься в результате или просто хочешь убедиться в правильности, можно выполнить проверку.

    Проверка выполняется обратным действием. Сложение проверяем вычитанием и наоборот.

    Проверка: 260 + 300 = 560

    Проверка: 360 + 240 = 600

    Сегодня мы раскрыли вам секреты приёмов устного сложения и вычитания.

    Пользуйтесь ими и удачи!

    Задания тренировочного модуля:

    1. Распределите карточки с примерами на две группы по более удобному способу решения.

    1. Поставьте в ячейке напротив «+», если согласны с решением, и «-», если не согласны.

    1. Ученик решил примеры. Выберите отметку, которую он получил за работу.

    Источник

  • Оцените статью
    Разные способы