Решение одного уравнения несколькими способами

Решение одного тригонометрического уравнения разными способами

Разделы: Математика

Урок систематизации и обобщения знаний учащихся по теме: “Преобразование тригонометрических выражений” на примере решения одного тригонометрического уравнения разными способами проводится по методу проектов с использованием сервисов Web 2.0.(https://sites.google.com/site/mediacenternn/setevye-servisy-veb-2-0) Эти сервисы позволяют пользователям совместно работать над одним проектом не только в классе, но и дома дистанционно, размещать в сети текстовую и медиа информацию. Урок “Решение одного тригонометрического уравнения разными способами” является заключительным этапом в учебном проекте: “Нахождение способов решения одного тригонометрического уравнения”, который рассчитан на 10 учебных занятий и 4-ре внеурочных занятия.

Подготовительный этап к уроку. Класс делится на четыре группы, которые самостоятельно готовят к заключительному уроку мини-проект – это домашняя работа. Каждая группа собирает “копилку” тригонометрических уравнений (не менее 10), решает их различными способами.

Совместно с группами разрабатывается маршрут, группы делят обязанности внутри группы и назначают лидера группы, определяют вид защиты проекта, придумывают рекламу способа — синквейн, работу оформляют в виртуальной тетради.

Обязанности внутри группы:

— Один ученик подбирает весь теоретический материал по данным заданиям. Его задача : объединить теоретический материал по данному модулю в единую презентацию и выложить ее в совместный доступ, с помощью презентации Google.

— Один ученик подбирает ЦОР и средства Intel, которые наиболее эффективны. Его задача: создать базу данных сайтов, ресурсов, которые максимально смогут помочь в подготовке к защите проекта (“Аналитик группы”);

— Два ученика решают задания на один из способов каждый. Затем обучают каждого члена группы. (“Практики группы”).

После этого группам дается отработать на их “копилке” два способа.

  • 1 группа: “Универсальная подстановка. Графический метод”;
  • 2 группа: “Разложение левой части уравнения на множители. Возведение обеих частей уравнения в квадрат”;
  • 3 группа: “Введение вспомогательного угла. Приведение к квадратному”;
  • 4 группа: “Преобразование разности или суммы тригонометрических функций в произведение. Приведение уравнения к однородному”.

Тип урока: обобщение и систематизация материала.

Обобщение, систематизация и контроль знаний учащихся по теме: “Преобразование тригонометрических выражений” с использованием мультимедийных, сетевых компьютерных технологий, а также сервисов Web 2.0 и системы управления классом Classroom Management (Приложение 1)

Развивающая:

  • Развитие логического и аналитического мышления, интеллектуальных способностей: умение анализировать, обобщать, систематизировать, сравнивать и делать выводы.

Задачи урока:

  1. Систематизировать, расширить и углубить знания, умения учащихся применять различные способы при решении тригонометрических уравнений.
  2. Продолжить формирование самоконтроля, взаимоконтроля, самоанализа.
  3. Продолжить учиться работать в команде, используя общения в блогах и чатах.
  4. Продолжить учиться самостоятельной работе с разными источниками информации, отбору необходимого, сравнению и установлению связей между известными фактами и явлениями, используя сервисы Web 2.0.
  5. Продолжить формирование навыков анализа полученной информации.
  6. Продолжить работу с электронными таблицами, программами обработки изображений, программами разработки веб-сайтов, различных социальных сервисов Intel.
  7. Подготовиться к тесту по теме Тригонометрические уравнения”.

Время проведения: два урока по 40 минут.

Оборудование:

  • Компьютер, принтер, сканер.
  • видеопроектор, документ камера, интерактивная доска;
  • у каждого учащегося на классмейтах (Ноутбук школьника на базе процессора Inte), оценочные листы; листы взаимопроверки;
  • карточки с уравнениями (рассылаются при помощи системы управления классом Classroom Management каждому ученику группы)
  • варианты самостоятельной работы;
  • презентация урока.
  • Оценочные листы

1. Организационный момент (3 мин.)

1). Решение ситуативной задачи

2. Актуализация знаний (32 мин.)

1). Постановка целей и задач.

2). Решение уравнений.

3). Проверка домашнего задания (защита проектов).

3. Закрепление знаний, умений и навыков (30 мин.)

1). Обобщение методов решения тригонометрических уравнений.

2). Размещение способов решения тригонометрических уравнений в общую презентацию.

4. Контроль знаний (10 мин.)

1). Самостоятельная работа.

2). Самопроверка ответов.

5. Домашнее задание (2 мин).

6. Итог урока (рефлексия) (3 мин.).

1. Организационный момент

Тема нашего урока: “Решение одного тригонометрического уравнения разными способами”.

Читайте также:  Каким способом следует производить строповку загруженного деревянного поддона или полимерной тары

Начать хочу урок старой притчей:

Притча о рыбаке

Когда сели уже за стол, во дворе замаячила фигура. Это нищий топтался у ворот, не решаясь войти. Бабушка вышла к нему и позвала во двор. Нищий был худой и какой-то изможденный. Его накормили жаренной рыбой и налили большую кружку молока. Нищий ел и благодарно посматривал на хозяина.

– Благодарствую, дай вам Бог здоровья, – нищий поклонился в пояс и спрятал недоеденную корку хлеба в рукав.

– На здоровье, – ответил хозяин.

– Может, дадите мне еще хлеба, – нищий с надеждой посмотрел на старика.

– Мы дадим тебе кое-что получше. Вот. – и хозяин протянул нищему свою удочку.

– Спасибо, – нищий взял удочку и, бережно прижимая, пошел со двора.

Мальчик непонимающе посмотрел на деда:

– Дедушка, зачем ты отдал ему свою удочку? Тебе что хлеба жалко было?

Старик посмотрел на уже высоко поднявшееся солнце и сказал:

– Да нет, мне не жалко. Но понимаешь, если я дам ему буханку хлеба, он будет сыт сегодня. А, если он научится ловить рыбу, он будет сыт всегда.

В чем смысл этой притчи? Какое отношение она имеет к нашему уроку?

2. Актуализация знаний.

— Прежде чем приступить к работе, каждый из вас должен поставить перед собой цель сегодняшнего урока, обсудить ее с членами вашей группы, выбрать общую цель и разместить ее на web- доске Lino.

— Сформулируйте общую цель урока.

Итак, у нас сегодня обобщающий урок по теме: “Преобразование тригонометрических выражений”. Тригонометрические уравнения есть в заданиях ЕГЭ, как в первой части, так и во второй, и оказываются вполне решаемыми, тригонометрическое уравнение во второй части. Поэтому вы должны иметь четкое представление о том, что тригонометрические уравнения решаются часто стандартными методами. Их немного, если их освоить, то решение тригонометрического уравнения из второй части становится вполне посильной задачей для вас. Работать мы будем сегодня и индивидуально, и в группах.

Наша общая задача состоит в том, чтобы составить таблицу классификации способов решения одного тригонометрического уравнения.

Эпиграфом к уроку я взяла слова Конфуция, зашифрованные в ребусе. Для этого надо решить упражнения и по ответам найти слова этого крылатого выражения. Работа группы должна быть быстрой, четкой. Карточки с заданиями находятся на рабочих столах ваших классмейтов. (Приложение 2). Посмотрим, чья группа справится первой. Окончание вашей работы оповестите кнопкой “Статус мгновенных сообщений”

Итак, эпиграфом нашего урока будут слова Конфуция:

“Три пути ведут к знанию: путь РАЗМЫШЛЕНИЯ – это путь самый благородный, путь ПОДРАЖАНИЯ – это путь самый легкий и путь ОПЫТА – это путь самый горький!”.

На дом было дано задание по группам: исследовать тригонометрические уравнения из ваших копилок, и решить их определенными способами, в каждой группе таких способов было два. Решения тригонометрических уравнений своими способами вы исследовали дома, свою работу оформляли в виртуальных тетрадях, капитаны проконсультировались со мной перед уроком по поводу их решения и сейчас каждая группа покажет, что у них получилось, а все ваши недочеты и ошибки вы откорректируете дома (презентация исследований).

Вы прослушали отчет каждой группы. Узнали другие способы решения тригонометрических уравнений, нашли и исправили ошибки, теперь пройдите по ссылке https://docs.google.com/spreadsheets/d/1NyMRwijuk6GhFqOnZMi-hx8lFUquGCGt3X2DQLxbfUQ/edit#gid=0 и оцените свою работу и работу микро групп. https://docs.google.com/document/d/1XqZCKfP3AaR1wb_T-xSyjgM2cHOFs9zQavxIg7xNhGc/edit

3. Закрепление знаний, умений и навыков.

Теперь нам предстоит решить одно уравнение всеми известными нам способами, каждая группа будет решать его своими способами, после этого надо дописать в группах таблицу классификации способов решения одного тригонометрического уравнения. Сравните полученный результат с моим.

Для получения общего продукта нашего труда вам необходимо разместить решения в общую презентацию, для этого воспользуйтесь ссылкой на онлайн-офис Google. https://docs.google.com/presentation/d/1fRekbKTq8etuwMxr-xfqwm4ZShDjbJrK59b5-Lxu-CA/edit#slide=id.ga825dc26e_72

Обратите внимание, что у каждого из этих способов есть преимущества и недостатки, о которых нам рассказали представители каждой из групп.

Читайте также:  Определение способов продажи предприятия

— Какие же проблемы могут возникнуть при решении тригонометрических уравнений?

Потеря корня.

  • Операции, сужающие область определения:
  • Деление на g(х)
  • Опасные формулы (универсальная подстановка)

Лишние корни.

  • Операции, расширяющие область определения:
  • Возведение в четную степень
  • Умножение на g(х) (освобождение от знаменателя)

— Есть ли универсальный способ решения тригонометрических уравнений?

4. Контроль знаний.

Для того, чтобы выяснить на сколько вы усвоили способы решения тригонометрических уравнений, каждому из вас будет предложена самостоятельная работа в виде двух уравнений, ваша задача решить их разными способами, способы решения вы выбираете самостоятельно, пользуясь таблицей “Классификация способов решения тригонометрических уравнений”. Работу выполните на листочках. Ответы запишите в тетрадь. После того, как сдали листочки, проверьте (ответы на обратной стороне доски) и оцените себя.

Вариант 1 Вариант 2
1.
Вариант 1 Вариант 2
1.
2.

5. Домашнее задание. Составить онлайн-тест по теме: “Преобразование тригонометрических выражений. 3 задания с выбором ответа, 2 задания с коротким ответом и 3 задания высокого уровня сложности, можно воспользоваться материалами сайта http://www.uztest.ru/

— Достигли вы поставленных для себя целей?

  • Заполните Оценочные листы.
  • Оцените уровень сложности урока. (Приложение 3)
  • Фотографии с урока (Приложение 4)

Источник

Решение простых линейных уравнений

О чем эта статья:

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

Читайте также:  Кто по способу питания раки

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

    Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на общий множитель, то есть 6.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

5х — 3х — 2х = — 12 — 1 + 15 — 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Найти неизвестную переменную.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = — 0, 18

Пример 5. Решить:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = — 0,25

Источник

Оцените статью
Разные способы