Решение геометрических задач графическим способом

Геометрические и графические методы решение текстовых задач

Аннотация. Статья посвящена исследованию решения задач геометрическим и графическим способом.
Ключевые слова: графический метод, диаграмма, метод площадей.








В процессе работы мы научились переводить алгебраическое условие задачи на геометрический язык графиков, позволяющий оптимизировать процесс решения текстовых задач на равномерные процессы.

Достоинство геометрического решения задачи – в его наглядности: на графике видна связь между величинами, входящими в условие задачи; чертеж помогает расширить задачу – поставить и решить более общие вопросы, глубже проникнуть в существо задачи, оценить реальность результата и промежуточных действий.

И, наконец, традиционные решения алгебраическим или арифметическим способом зачастую являются громоздкими и сложными, требуют больших временных затрат, что не допустимо в условиях сдачи экзаменов в форме ЕГЭ И ГИА, когда время ограничено. Графический способ экономит время.

В результате нами был сформирован собственный тематический сборник заданий, где мы приводим подробное решение практически всех задач. В некоторых разделах сборника приводятся дополнительные задания для тех, кто захочет самостоятельно попробовать применить описанные нами методы решения.

Ссылки на источники

  1. Островский А.И., Кордемский Б.А. Геометрия помогает арифметике. М.: Столетие, 1995.-176с.
  2. Островский А.И., Кордемский Б.А. Геометрия помогает арифметике. М.:ФИЗМАТГИЗ, 1960.
  3. Уфановский В.А. Математический аквариум. — Ижевск: НИЦ «Регулярная и хаотическая механика», 2000.
  4. Шарыгин И.Ф., Факультативный курс по математике: Решение задач: Учеб. пособие для 10кл. сред. шк. – М.: Просвещение, 1989. – 252с.
  5. Якир М.С., Мерзляк А.Г., Полонский В.Б. Неожиданный шаг или сто тринадцать красивых задач. Киев: Агрорифма «Александрия». 1993.
  6. Генкин Г.3. Геометрические решение негеометрических задач: кн. для учителя. – М.: Столетие, 1995. – 176 с.
  7. Российская экономическая академия (РЭА) им. В.Г. Плеханова. Вступительная работа 2000г.

Островский А.И., Кордемский Б.А. Геометрия помогает арифметике. М.: Столетие, 1995.-176с.

Островский А.И., Кордемский Б.А. Геометрия помогает арифметике. М.:ФИЗМАТГИЗ, 1960.

Уфановский В.А. Математический аквариум. — Ижевск: НИЦ «Регулярная и хаотическая механика», 2000.

Шарыгин И.Ф., Факультативный курс по математике: Решение задач: Учеб. пособие для 10кл. сред. шк. – М.: Просвещение, 1989. – 252с.

Якир М.С., Мерзляк А.Г., Полонский В.Б. Неожиданный шаг или сто тринадцать красивых задач. Киев: Агрорифма «Александрия». 1993.

Генкин Г.3. Геометрические решение негеометрических задач: кн. для учителя. – М.: Столетие, 1995. – 176 с.

Российская экономическая академия (РЭА) им. В.Г. Плеханова. Вступительная работа 2000г.

Источник

Графический метод решения задач с параметрами

Теперь вы узнали, что такое параметр, и увидели решение самых простых задач.

Но подождите — рано успокаиваться и говорить, что вы все знаете. Есть множество типов задач с параметрами и приемов их решения. Чтобы чувствовать себя уверенно, мало посмотреть решения трех незатейливых задач.

Вот список тем, которые стоит повторить:

1. Элементарные функции и их графики. Парабола, синус, логарифм, арктангенс и все остальные — всех их надо знать «в лицо».

Только после этого можно переходить к самому простому и наглядному способу решения задач с параметрами — графическому. Конечно, он не единственный. Но начинать лучше всего именно с него.

Мы разберем несколько самых простых задач, решаемых графическим методом. Больше задач — в видеокурсе «Графический метод решения задач с параметрами» (бесплатно).

1. При каких значениях параметра a уравнение имеет ровно 2 различных решения?

Дробь равна нулю тогда и только тогда, когда ее числитель равен нулю, а знаменатель не равен нулю.

В первом уравнении выделим полный квадрат:

Это уравнение окружности с центром в точке и радиусом равным 2. Обратите внимание — графики будем строить в координатах х; а.

Уравнение задает прямую, проходящую через начало координат. Нам нужны ординаты точек, лежащих на окружности и не лежащих на этой прямой.

Для того чтобы точка лежала на окружности, ее ордината а должна быть не меньше 0 и не больше 4.

Кроме того, точка не должна лежать на прямой , которая пересекает окружность в точках и Координаты этих точек легко найти, подставим в уравнение окружности.

Точка С также не подходит нам, поскольку при мы получим единственную точку, лежащую на окружности, и единственное решение уравнения.

2. Найдите все значения a, при которых уравнение имеет единственное решение.

Уравнение равносильно системе:

Мы возвели обе части уравнения в квадрат при условии, что (смотри тему «Иррациональные уравнения»).

Раскроем скобки в правой части уравнения, применяя формулу квадрата трехчлена. Получаем систему.

Приводим подобные слагаемые в уравнении.

Заметим, что при прибавлении к правой и левой части числа 49 можно выделить полные квадраты:

Решим систему графически:

Уравнение задает окружность с центром в точке , где радиус

Неравенство задает полуплоскость, которая расположена выше прямой , вместе с самой этой прямой.

Исходное уравнение имеет единственное решение, если окружность имеет единственную общую точку с полуплоскостью. Другими словами, окружность касается прямой, заданной уравнением

Пусть С — точка касания.

На координатной плоскости отметим точки и , в которых прямая пересекает оси Y и Х.

Рассмотрим треугольник ABP. Он прямоугольный, и радиус окружности PC является медианой этого треугольника. Значит по свойству медианы прямоугольного треугольника, проведенной к гипотенузе.

Из треугольника ABP найдем длину гипотенузы AB по теореме Пифагора.

Решая это уравнение, получаем, что

3. Найдите все положительные значения параметра а, при каждом из которых система имеет единственное решение.

График уравнения — окружность с центром и радиусом равным 2.

График уравнения — две симметричные окружности и радиуса 2 c центрами в точках и

Второе уравнение при задает окружность с центром в точке и радиусом a.

Вот такая картинка, похожая на злую птицу. Или на хрюшку. Кому что нравится.

Система имеет единственное решение в случаях, когда окружность , задаваемая вторым уравнением, касается только левой окружности или только правой

Если a — радиус окружности , то это значит, что (только правая) или (только левая).

Пусть А — точка касания окружности и окружности

, (как гипотенуза прямоугольного треугольника МNР с катетами 3 и 4),

В — точка касания окружности и окружности

длину MQ найдем как гипотенузу прямоугольного треугольника KMQ с катетами 7 и 4; Тогда для точки В получим:

Есть еще точки С и D, в которых окружность касается окружности или окружности соответственно. Однако эти точки нам не подходят. В самом деле, для точки С:

, но и это значит, что окружность с центром в точке М, проходящая через точку С, будет пересекать левую окружность и система будет иметь не одно, а три решения.

Аналогично, для точки D:

и значит, окружность с центром М, проходящая через точку D, будет пересекать правую окружность и система будет иметь три решения.

4. При каких значениях a система уравнений имеет 4 решения?

Конечно же, решаем графически. Только непуганый безумец возьмется решать такую систему аналитически : -)

И в первом, и во втором уравнении системы уже можно разглядеть известные «базовые элементы» (ссылка) — в первом ромбик, во втором окружность. Видите их? Как, еще нет? — Сейчас увидите!

Просто выделили полный квадрат во втором уравнении.

Сделаем замену Система примет вид:

Вот теперь все видно! Рисовать будем в координатах

Графиком первого уравнения является ромб, проходящий через точки с координатами и

Графиком второго уравнения является окружность с радиусом и центром в начале координат.

Когда же система имеет ровно 4 решения?

1) В случае, когда окружность вписана в ромб, то есть касается всех сторон ромба.

Запишем площадь ромба двумя способами — как произведение диагоналей пополам и как произведение стороны на высоту, проведенную к этой стороне.

Диагонали нашего ромба равны 8 и 6. Значит,

Сторону ромба найдем по теореме Пифагора. Видите на рисунке прямоугольный треугольник со катетами 3 и 4? Да, это египетский треугольник, и его гипотенуза, то есть сторона ромба, равна 5. Если h — высота ромба, то

При этом Мы помним, что если окружность вписана в ромб, то диаметр этой окружности равен высоте ромба. Отсюда

Мы получили ответ:

2) Есть второй случай, и мы его найдем.

Давайте посмотрим — если уменьшить радиус окружности, сделав , окружность будет лежать внутри ромба, не касаясь его сторон. Система не будет иметь решений, и нам это не подходит.

Пусть радиус окружности больше, чем , но меньше 3. Окружность дважды пересекает каждую из четырех сторон ромба, и система имеет целых 8 решений. Опять не то.

Пусть радиус окружности равен 3. Тогда система имеет 6 решений.

А что, если ? Окружность пересекает каждую сторону ромба ровно 1 раз, всего 4 решения. Подходит!

Значит, Объединим случаи и запишем ответ:

Больше задач и методов решения — на онлайн-курсе Анны Малковой. И на интенсивах ЕГЭ-Студии в Москве.

Источник

Исследовательская работа «Графический метод решения текстовых задач»

«Графический метод решения текстовых задач»

Киреева Людмила Александровна

учитель математики первой категории МБОУ

«Лицей №6 г. Горно-Алтайска»

Известно, что некоторые задачи алгебры очень трудно решить аналитическим путем. Поэтому любое представление условия задачи в виде рисунка или чертежа облегчает их решение.

В данной работе представлен графический метод решения задач, который основан на наглядно-геометрических интерпретациях, связанных с построением графического образа задачи на координатной плоскости. Таким образом, выбранная тема актуальна и перспективна. Из-за сложности, нестандартности графический метод решения задач в школьном курсе математики не изучается.

Проблема: Появились совершенно новые типы задач, не входящие в действующие школьные учебники, при решении которых необходимо практическое применение свойств, которые раньше заучивались лишь теоретически.

Гипотеза: решение задач графическим методом является наглядным представлением условий в виде рисунка или чертежа, что помогает глубже понять условие задачи, делает его более наглядным, значительно упрощает решение.

Предмет исследования: графический метод решения задач

Цель: изучить графический метод решения задач, а также области его применения.

Изучить историю применения графического метода для решения задач различных видов.

Рассмотреть различные типы задач, методом решения которых может являться график.

Выявить плюсы и минусы этого метода, в сравнении с другими способами решения задач.

Выяснить области применения графического метода решения задач.

Глава 1. История применения графического метода для решения задач

Древние греки в 6–4 вв. до н.э. решали уравнения с неизвестными посредством геометрических построений. Были разработаны специальные построения для выполнения сложения, вычитания, умножения и деления отрезков, извлечения квадратных корней из длин отрезков; ныне этот метод называется геометрической алгеброй.

Они решали задачи на построение и смотрели, при каких значениях задача имеет решение, изучали, сколько решений может иметь эта задача, и т.д. Величайшим математическим физиком древности был Архимед. Для доказательства теорем механики он использовал геометрические соображения.

Приведение задач к геометрическому виду имело ряд важных последствий. В частности, числа стали рассматриваться отдельно от геометрии, поскольку работать с несоизмеримыми отношениями можно было только с помощью геометрических методов. Геометрия стала основой почти всей строгой математики по крайней мере до 17 века. И даже в 18 веке, когда уже были достаточно развиты алгебра и математический анализ, строгая математика трактовалась как геометрия, и слово «геометр» было равнозначно слову «математик».

Глава 2. Основные приемы решения задач с помощью графического метода.

Очень многие текстовые задачи на составление уравнений (или систем уравнений) можно решать графически. Графическое изображение функций, описывающих условие задачи – зачастую удобный технический прием.

Задачи на движение

Задачи на совместную работу

Задачи на смеси и сплавы

Задачи с параметрами

Решение, как известно, осуществляется двумя приемами: либо точными построениями при помощи инструментов (конструктивный прием), либо обоснованными вычислениями (вычислительный прием):

Конструктивный приём (чисто графический). График вычерчивается как можно более точно непосредственно по значениям величин, входящих в условие задачи. Построения делаются циркулем, линейкой на миллиметровой бумаге. Ответ получается обычно приближенный, но приемлемый для практических целей; мы находим его при помощи измерений длин отрезков или других элементов чертежа, или просто «читаем» ответ на чертеже.

Вычислительный прием (графико – вычислительный). График применяется как условное изображение связи между рассматриваемыми величинами. Решение задачи осуществляется на точных геометрических соотношениях.

Решение текстовой задачи графическим способом осуществляется в три этапа:

Построение графической модели задачи.

Решение получившейся графической задачи.

Перевод полученного ответа с графического языка на естественный.

Глава 3. Задачи на движение

Немаловажное значение в математике имеют задачи на движение. Задачи на движение подразделяются на следующие типы: по количеству движущихся объектов, по направлению движущихся объектов, по времени начала движения.

Задача 1 см. в Приложении 1

Из пункта O в пункт N вышел пешеход. Одновременно с ним из пункта N в пункт O выехал велосипедист, который встретил пешехода через 50 минут после своего выезда из N. Сколько времени понадобится пешеходу для того, чтобы пройти весь путь, если известно, что велосипедист проделал бы весть путь на 4 часа быстрее пешехода.

Построим график зависимости пройденного пешеходом и велосипедистом пути от времени (Рис.1). Пусть p(x) – зависимость пройденного пешеходом пути от времени x, w(x) — зависимость пройденного велосипедистом пути от времени x (Полное решение см. в Приложении 2).

Глава 4. Задачи на работу

В задачах на работу речь идёт, как правило, о какой-то деятельности.

Задачу 3 и ее решение смотрите в Приложении 3.

Двое рабочих, выполняя задание вместе, могли бы закончить его за 12 дней. Если сначала будет работать только один из них, а когда он выполнит половину всей работы, его сменит второй рабочий, то всё задание будет закончено за 25 дней. За сколько дней каждый рабочий в отдельности может выполнить всё задание?

Предположим, что первый рабочий работает быстрее, чем второй. Отрезок AN – график работы первого рабочего, а отрезок BD – график работы второго рабочего (Рис. 2 смотрите в Приложении 4).

AQ изображает время совместной работы; AQ=12 ч. Проведем NKǁBD, тогда AK=50, QK=38

x 1 =18 не подходит, т.к. первый рабочий работает быстрее. Тогда время первого 12 + 8 = 20 дней, а второго 38 8=30 дн.

Ответ: первый за 20 дней, а второй за 30 дней.

Глава 5. Задачи на смеси и сплавы

Задачи на смеси и сплавы считаются сложными.

Задачу 5 и ее решение смотрите в Приложении 5.

В 100г 20%-ного раствора соли добавили 300г её 10%-ного раствора. Определите процентную концентрацию раствора.

Отрезок прямой (основание графика) представляет собой общую массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости. (Рис. 3)

Глава 6. Задачи с параметром

Изучение многих физических процессов, химических, экономических и многих других закономерностей имеют практическую направленность и часто приводят к решению задач с параметрами, которые бывают весьма сложными и требующими нестандартного подхода к решению. Аналитические (алгебраические) методы решения задач с параметрами довольно громоздки, требуют аккуратности выкладок, умения не «потерять решение», проверить всевозможные значения параметра.

В современной жизни решение уравнений с параметрами является неотъемлемой частью выпускных и вступительных экзаменов в различные учебные заведения, поэтому очень важно понять и разобраться с этой темой ещё в школе.

Сколько корней в зависимости от а имеет уравнение ?

Перепишем уравнение в виде . Решим его в системе координат ( Оху ). Для этого построим графики функций и . (Рис. 4)

Ответ: Если , то уравнение имеет два корня; если , то уравнение имеет один корень; если , то корней нет.

Задача 8 и ее решение в Приложении 6.

Одно из преимуществ графического метода перед алгебраическим, состоит в наглядности решения, что позволяет лучше понять задачу. Использование этого метода упрощает решение задач: нет громоздких вычислений. График дает возможность определить, есть ли у данной задачи решение и единственно ли оно. Есть и «минусы»: иногда получаются приближённые значения в случаях неудачного масштаба или очень трудно вообще отыскать решение.

Современная наука и техника очень широко использует графики. График – международный язык техники.

Кроме того, в ходе освоения графического метода решения текстовых задач формируются практические навыки. Графический метод решения таких задач позволяет провести параллель с физикой, где использование системы координат достаточно часто применяется при решении физических задач. Также графический метод позволяет решать некоторые задачи из химии, например, рассмотренные нами задачи на смеси и сплавы.

Целью данной работы было изучение применения графиков линейной функции в решении текстовых задач. В процессе работы над данной темой, выяснилось, что при решении текстовых задач наряду с традиционными методами, можно использовать и графический метод. Были изучены материалы учебно-методической литературы. Решены задачи из экзаменационных материалов разными способами.

Гипотеза подтвердилась частично. Графический метод упрощает решение задач. Но есть и минусы, о которых было сказано выше. Настоящее исследование значительно расширило представление о линейной функции, способствовало глубокому пониманию взаимосвязи этой функции с реальными ситуациями, возникающими в нашей жизни. Есть планы продолжить исследование в этом направлении и более детально рассмотреть графико-геометрический метод, который основан на подобии треугольников.

Быков А.А. Сборник задач по математике. – М.:Изд..дом ГУ ВШЭ,2008

Генкель Г.З. «Геометрические решения негеометрических задач», — Москва: Просвещение 2007.

Кочагин В.В. ОГЭ 2018. Математика: тематические тренировочные задания: 9 класс. – Москва: Эксмо, 2017. – 192 с.

Лысенко Ф.Ф. Учимся решать задачи с параметром. Ростов-на-Дону:

Лунина Л.С. Обучение решению алгебраических задач геометрическим методом //Математика в школе: М.: Изд. «Школа-Пресс»,1996.-№4.- с.34-39.

Окунев А.А. Графическое решение уравнений с параметрами. – М.: ШколаПресс,1996.

Пирютко О. Н. «Графический метод решения текстовых задач» — Минск.: Новое знание,2010

Рудин В.Н., Рудина Е.И. Графическое решение текстовых задач. Учебное пособие по математике для учителей и учащихся. Издание Томского института повышения квалификации работников образования, 1995 г.

Савин А. П. Занимательные математические задачи. – М.: АСТ, 1995.

Сергеев И. Н. Математика. Задачи с ответами и решениями. Учебное пособие. – М.: Бином, 2004.

Шарыгин И. Ф. Факультативный курс по математике. Решение задач. Учебное пособие для 10 класса средней школы. – М.: Просвещение, 1989.

Из пункта A вышла грузовая машина со скоростью 60 км/ч. Через 2 ч вслед за ней из А вышла легковая машина со скоростью 90 км/ч. На каком расстоянии от пункта А легковая машина догонит грузовую?

За начальный отсчет времени берется момент выхода грузовой машины, тогда момент выхода легковой машины будет через два часа. Зная скорости движения объектов, построим графики движения (Рис. 5). По чертежу видно, что точка пересечения графиков показывает встречу машин, она состоялась на расстоянии 360 км.

Полное решение задачи 2.

Обозначим BC через x . Тогда NK = OB = 5/6 ч, CD = 4 ч, KT = x , KL = x + 4.

MBC

MKN – по двум углам: MBC = MKN = 90°, KMN = BMC – как вертикальные.

Из подобия следует:

MLK

MBO – по двум углам: KLM = MOB – как накрест лежащие углы при параллельных прямых, MBO = MKL = 90°. Из подобия следует:

Из равенств (1) и (2) получаем:

Так как OD = ( x + 5/6 + 4) – время прохождения пути пешеходом, то он проделал его за 5 часов.

Источник

Читайте также:  Атол 11ф способы подключения
Оцените статью
Разные способы