Решение дробно рациональных уравнений графическим способом

Графический способ решения уравнений — ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ — КВАДРАТНЫЕ УРАВНЕНИЯ

Цель: использование графиков функций для решения или исследования уравнений.

I. Сообщение темы и цели урока

II. Повторение и закрепление пройденного материала

1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).

2. Контроль усвоения материала (самостоятельная работа).

1. Катер прошел 46 км по течению реки и 17 км против течения, затратив на весь путь 3 ч. Найти собственную скорость катера, если скорость течения реки 3 км/ч.

2. Знаменатель несократимой обыкновенной дроби на 7 больше ее числителя. Если числитель дроби увеличить на 3, а ее знаменатель уменьшить на 3, то полученная дробь будет на 11/18 больше данной дроби. Найдите данную дробь.

1. Катер прошел 20 км по течению реки и 32 км против течения, затратив на весь путь 3 ч. Найти собственную скорость катера, если скорость течения реки 2 км/ч.

2. Знаменатель несократимой обыкновенной дроби на 5 больше ее числителя. Если числитель дроби увеличить на 2, а ее знаменатель уменьшить на 2, то полученная дробь будет на 18/35 больше данной дроби. Найдите данную дробь.

III. Изучение нового материала (основные понятия)

Во многих случаях для решения или исследования уравнений используют графики функций.

Решим уравнение х2 + 2 = 3/x.

В одной координатной плоскости построим графики функций у1 = х2 + 2 и у2 = 3/x. Видно, что эти графики пересекаются в единственной точке А (1; 3). Абсцисса точки пересечения А есть то значение переменной х, при котором значения функций у1 и у2 равны (или выражения х2 + 2 и 3/x принимают равные значения). Итак, данное уравнение х2 + 2 = 3/x имеет единственный корень х = 1.

Заметим, что для нахождения корня данного уравнения могут быть рассмотрены графики и других функций. Учтем, что в уравнении х2 + 2 = 3/x величина х ≠ 0. Умножим все члены уравнения на х и получим равносильное уравнение: х3 + 2х = 3 или х3 = 3 — 2х. Построим графики функций у1 = х3 и у2 = 3 — 2х. Видно, что графики этих функций пересекаются в единственной точке А (1; 1). При х = 1 значения функций у1 и у2 равны (или выражения х3 и 3 — 2х принимают равные значения). Итак, х = 1 — единственный корень данного уравнения.

Рассмотренный способ решения уравнения называют графическим.

Графически решим уравнение х2 = |х — 1|.

В одной системе координат построим графики функций у1 = х2 и у2 = |х — 1|. Видно, что эти графики пересекаются в двух точках А и В. Приближенное значение абсцисс этих точек х1 ≈ -1,6 и х2 ≈ 0,6 соответственно. Заметим, что решив аналитически данное уравнение, получим

При различных значениях параметра а определите число корней уравнения х2 — |х| + а = 0.

Данное уравнение запишем в виде х2 + a = |х|. Построим график функций у1 = х2 + а и у2 = |х|. График функции у2 не зависит от параметра а. График функции у1 представляет собой параболу, вершина которой имеет координаты (0; а). С уменьшением параметра а парабола смещается вниз.

При достаточно больших значениях а графики у1 и у2 не имеют общих точек (случай а). Уравнение при этом решений не имеет. При уменьшении параметра а парабола спускается вниз и касается зависимости у2 в двух точках (случай б). Тогда уравнение имеет два корня. При дальнейшем уменьшении а парабола пересекает каждую ветвь графика у2 в двух точках (этот случай на рисунке не изображен). При этом уравнение имеет четыре корня. При а = 0 парабола расположена еще ниже и пересекает графику в трех точках (случай в). Тогда уравнение имеет три корня. При дальнейшем уменьшении а (т. е. при а 1/4 — нет корней.

IV. Задание на уроке

№ 622 (а); 624; 626; 627 (а); 628 (а).

V. Задание на дом

№ 622 (б); 623; 625; 627 (б); 629 (б); 629.

VI. Творческие задания

1. Графически решите уравнение;

а) х1 = -0,6 и х2 = 1,6.

б) х1 = -2 и х2 = 1; .

ж) х1 = -1 и х2 = 2;

з) х1 = -4 и х2 = 1; .

2. Определите число корней уравнения:

а) при а -3 — 1 корень;

б) при а 2 — 1 корень;

в) при а 2 — 2 корня;

г) при а 3 — 2 корня;

д) при а 1 — корней нет, при а = -1 или а = 1 — бесконечно много корней, при -1 3 — корней нет, при а = -3 или а = 3 — бесконечно много корней, при -3 -2 — 1 корень;

з) при а 2 — 3 корня.

VII. Подведение итогов урока

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.

Источник

Дробно-рациональные уравнения. Алгоритм решения

Дробно-рациональные уравнения – уравнения, которые можно свести к виду \(\frac\) \(=0\), где \(P(x)\) и \(Q(x)\) — выражения с иксом (или другой переменной).

Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе.

Пример не дробно-рациональных уравнений:

Как решаются дробно-рациональные уравнения?

Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным.

Алгоритм решения дробно-рационального уравнения:

Выпишите и «решите» ОДЗ.

Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут.

Запишите уравнение, не раскрывая скобок.

Решите полученное уравнение.

Проверьте найденные корни с ОДЗ.

Запишите в ответ корни, которые прошли проверку в п.7.

Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам.

Пример. Решите дробно-рациональное уравнение \(\frac — \frac<7>=\frac<8>\)

Сначала записываем и «решаем» ОДЗ.

По формуле сокращенного умножения : \(x^2-4=(x-2)(x+2)\). Значит, общий знаменатель дробей будет \((x-2)(x+2)\). Умножаем каждый член уравнения на \((x-2)(x+2)\).

Сокращаем то, что можно и записываем получившееся уравнение.

Приводим подобные слагаемые

Согласуем корни с ОДЗ. Замечаем, что по ОДЗ \(x≠2\). Значит первый корень — посторонний. В ответ записываем только второй.

Пример. Найдите корни дробно-рационального уравнения \(\frac + \frac-\frac<7-x>\) \(=0\)

Записываем и «решаем» ОДЗ.

Раскладываем квадратный трехчлен \(x^2+7x+10\) на множители по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\).
Благо \(x_1\) и \(x_2\) мы уже нашли.

Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение.

Приводим подобные слагаемые

Находим корни уравнения

Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень.

Источник

Дробно-рациональные уравнения

Что такое дробно-рациональные уравнения

Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

9 x 2 — 1 3 x = 0

1 2 x + x x + 1 = 1 2

6 x + 1 = x 2 — 5 x x + 1

Уравнения, которые не являются дробно-рациональными:

Как решаются дробно-рациональные уравнения

В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

Алгоритм действий при стандартном способе решения:

  1. Выписать и определить ОДЗ.
  2. Найти общий знаменатель для дробей.
  3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
  4. Записать уравнение со скобками.
  5. Раскрыть скобки для приведения подобных слагаемых.
  6. Найти корни полученного уравнения.
  7. Выполним проверку корней в соответствии с ОДЗ.
  8. Записать ответ.

Пример 1

Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

x x — 2 — 7 x + 2 = 8 x 2 — 4

Начать следует с области допустимых значений:

x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

Воспользуемся правилом сокращенного умножения:

x 2 — 4 = ( x — 2 ) ( x + 2 )

В результате общим знаменателем дробей является:

Выполним умножение каждого из членов выражения на общий знаменатель:

x x — 2 — 7 x + 2 = 8 x 2 — 4

x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

После сокращения избавимся от скобок и приведем подобные слагаемые:

x ( x + 2 ) — 7 ( x — 2 ) = 8

x 2 + 2 x — 7 x + 14 = 8

Осталось решить квадратное уравнение:

Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

Примеры задач с ответами для 9 класса

Требуется решить дробно-рациональное уравнение:

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

Определим область допустимых значений:

О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

x 2 + 7 x + 10 ≠ 0

D = 49 — 4 · 10 = 9

x 1 ≠ — 7 + 3 2 = — 2

x 2 ≠ — 7 — 3 2 = — 5

Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

— ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

2 x 2 + 9 x — 5 = 0

Потребуется решить квадратное уравнение:

2 x 2 + 9 x — 5 = 0

Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

Дано дробно-рациональное уравнение, корни которого требуется найти:

4 x — 2 — 3 x + 4 = 1

В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0

4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

— x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

( x — 2 ) ( x + 4 ) ≠ 0

Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

— x 2 — x + 30 = 0 _ _ _ · ( — 1 )

Получилось квадратное уравнение, которое можно решить:

Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

Нужно решить дробно-рациональное уравнение:

x + 2 x 2 — 2 x — x x — 2 = 3 x

На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0

x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

— x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

— x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

Корни квадратного уравнения:

x 1 = — 4 ; x 2 = 2

Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

Найти корни уравнения:

x 2 — x — 6 x — 3 = x + 2

Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0

x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

Ответ: х — любое число, за исключением 3.

Требуется вычислить корни дробно-рационального уравнения:

5 x — 2 — 3 x + 2 = 20 x 2 — 4

На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0

5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

( x — 2 ) ( x + 2 ) ≠ 0

Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

Ответ: корни отсутствуют

Нужно найти корни уравнения:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

Начнем с определения ОДЗ:

— 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

( x — 3 ) x + x = x + 5

Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

x 1 · x 2 = — 10 x 1 + x 2 = 3

В этом случае подходящими являются числа: -2 и 5.

Второе значение не соответствует области допустимых значений.

Источник

Читайте также:  Морской способ разработки месторождений
Оцените статью
Разные способы