- Графический способ решения уравнений — ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ — КВАДРАТНЫЕ УРАВНЕНИЯ
- Дробно-рациональные уравнения. Алгоритм решения
- Дробно-рациональные уравнения – уравнения, которые можно свести к виду \(\frac
\) \(=0\), где \(P(x)\) и \(Q(x)\) — выражения с иксом (или другой переменной).
- Как решаются дробно-рациональные уравнения?
- Дробно-рациональные уравнения
- Что такое дробно-рациональные уравнения
- Как решаются дробно-рациональные уравнения
- Примеры задач с ответами для 9 класса
Графический способ решения уравнений — ДРОБНЫЕ РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ — КВАДРАТНЫЕ УРАВНЕНИЯ
Цель: использование графиков функций для решения или исследования уравнений.
I. Сообщение темы и цели урока
II. Повторение и закрепление пройденного материала
1. Ответы на вопросы по домашнему заданию (разбор нерешенных задач).
2. Контроль усвоения материала (самостоятельная работа).
1. Катер прошел 46 км по течению реки и 17 км против течения, затратив на весь путь 3 ч. Найти собственную скорость катера, если скорость течения реки 3 км/ч.
2. Знаменатель несократимой обыкновенной дроби на 7 больше ее числителя. Если числитель дроби увеличить на 3, а ее знаменатель уменьшить на 3, то полученная дробь будет на 11/18 больше данной дроби. Найдите данную дробь.
1. Катер прошел 20 км по течению реки и 32 км против течения, затратив на весь путь 3 ч. Найти собственную скорость катера, если скорость течения реки 2 км/ч.
2. Знаменатель несократимой обыкновенной дроби на 5 больше ее числителя. Если числитель дроби увеличить на 2, а ее знаменатель уменьшить на 2, то полученная дробь будет на 18/35 больше данной дроби. Найдите данную дробь.
III. Изучение нового материала (основные понятия)
Во многих случаях для решения или исследования уравнений используют графики функций.
Решим уравнение х2 + 2 = 3/x.
В одной координатной плоскости построим графики функций у1 = х2 + 2 и у2 = 3/x. Видно, что эти графики пересекаются в единственной точке А (1; 3). Абсцисса точки пересечения А есть то значение переменной х, при котором значения функций у1 и у2 равны (или выражения х2 + 2 и 3/x принимают равные значения). Итак, данное уравнение х2 + 2 = 3/x имеет единственный корень х = 1.
Заметим, что для нахождения корня данного уравнения могут быть рассмотрены графики и других функций. Учтем, что в уравнении х2 + 2 = 3/x величина х ≠ 0. Умножим все члены уравнения на х и получим равносильное уравнение: х3 + 2х = 3 или х3 = 3 — 2х. Построим графики функций у1 = х3 и у2 = 3 — 2х. Видно, что графики этих функций пересекаются в единственной точке А (1; 1). При х = 1 значения функций у1 и у2 равны (или выражения х3 и 3 — 2х принимают равные значения). Итак, х = 1 — единственный корень данного уравнения.
Рассмотренный способ решения уравнения называют графическим.
Графически решим уравнение х2 = |х — 1|.
В одной системе координат построим графики функций у1 = х2 и у2 = |х — 1|. Видно, что эти графики пересекаются в двух точках А и В. Приближенное значение абсцисс этих точек х1 ≈ -1,6 и х2 ≈ 0,6 соответственно. Заметим, что решив аналитически данное уравнение, получим
При различных значениях параметра а определите число корней уравнения х2 — |х| + а = 0.
Данное уравнение запишем в виде х2 + a = |х|. Построим график функций у1 = х2 + а и у2 = |х|. График функции у2 не зависит от параметра а. График функции у1 представляет собой параболу, вершина которой имеет координаты (0; а). С уменьшением параметра а парабола смещается вниз.
При достаточно больших значениях а графики у1 и у2 не имеют общих точек (случай а). Уравнение при этом решений не имеет. При уменьшении параметра а парабола спускается вниз и касается зависимости у2 в двух точках (случай б). Тогда уравнение имеет два корня. При дальнейшем уменьшении а парабола пересекает каждую ветвь графика у2 в двух точках (этот случай на рисунке не изображен). При этом уравнение имеет четыре корня. При а = 0 парабола расположена еще ниже и пересекает графику в трех точках (случай в). Тогда уравнение имеет три корня. При дальнейшем уменьшении а (т. е. при а 1/4 — нет корней.
IV. Задание на уроке
№ 622 (а); 624; 626; 627 (а); 628 (а).
V. Задание на дом
№ 622 (б); 623; 625; 627 (б); 629 (б); 629.
VI. Творческие задания
1. Графически решите уравнение;
а) х1 = -0,6 и х2 = 1,6.
б) х1 = -2 и х2 = 1; .
ж) х1 = -1 и х2 = 2;
з) х1 = -4 и х2 = 1; .
2. Определите число корней уравнения:
а) при а -3 — 1 корень;
б) при а 2 — 1 корень;
в) при а 2 — 2 корня;
г) при а 3 — 2 корня;
д) при а 1 — корней нет, при а = -1 или а = 1 — бесконечно много корней, при -1 3 — корней нет, при а = -3 или а = 3 — бесконечно много корней, при -3 -2 — 1 корень;
з) при а 2 — 3 корня.
VII. Подведение итогов урока
Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.
Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.
Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.
Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.
© 2014-2021 Все права на дизайн сайта принадлежат С.Є.А.
Источник
Дробно-рациональные уравнения. Алгоритм решения
Дробно-рациональные уравнения – уравнения, которые можно свести к виду \(\frac
Проще говоря, это уравнения, в которых есть хотя бы одна дробь с переменной в знаменателе. Пример не дробно-рациональных уравнений: Главное, что надо запомнить про дробно-рациональные уравнения – в них надо писать ОДЗ . И после нахождения корней – обязательно проверять их на допустимость. Иначе могут появиться посторонние корни, и все решение будет считаться неверным. Алгоритм решения дробно-рационального уравнения: Выпишите и «решите» ОДЗ. Умножьте каждый член уравнения на общий знаменатель и сократите полученные дроби. Знаменатели при этом пропадут. Запишите уравнение, не раскрывая скобок. Решите полученное уравнение. Проверьте найденные корни с ОДЗ. Запишите в ответ корни, которые прошли проверку в п.7. Алгоритм не заучивайте, 3-5 решенных уравнений – и он запомнится сам. Пример. Решите дробно-рациональное уравнение \(\frac Сначала записываем и «решаем» ОДЗ. По формуле сокращенного умножения : \(x^2-4=(x-2)(x+2)\). Значит, общий знаменатель дробей будет \((x-2)(x+2)\). Умножаем каждый член уравнения на \((x-2)(x+2)\). Сокращаем то, что можно и записываем получившееся уравнение. Приводим подобные слагаемые Согласуем корни с ОДЗ. Замечаем, что по ОДЗ \(x≠2\). Значит первый корень — посторонний. В ответ записываем только второй. Пример. Найдите корни дробно-рационального уравнения \(\frac Записываем и «решаем» ОДЗ. Раскладываем квадратный трехчлен \(x^2+7x+10\) на множители по формуле: \(ax^2+bx+c=a(x-x_1)(x-x_2)\). Очевидно, общий знаменатель дробей: \((x+2)(x+5)\). Умножаем на него всё уравнение. Приводим подобные слагаемые Находим корни уравнения Один из корней не подходи под ОДЗ, поэтому в ответ записываем только второй корень. Источник Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как: при P ( x ) и Q ( x ) в виде выражений, содержащих переменную. Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем. 9 x 2 — 1 3 x = 0 1 2 x + x x + 1 = 1 2 6 x + 1 = x 2 — 5 x x + 1 Уравнения, которые не являются дробно-рациональными: В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения. Алгоритм действий при стандартном способе решения: Пример 1 Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить: x x — 2 — 7 x + 2 = 8 x 2 — 4 Начать следует с области допустимых значений: x 2 — 4 ≠ 0 ⇔ x ≠ ± 2 Воспользуемся правилом сокращенного умножения: x 2 — 4 = ( x — 2 ) ( x + 2 ) В результате общим знаменателем дробей является: Выполним умножение каждого из членов выражения на общий знаменатель: x x — 2 — 7 x + 2 = 8 x 2 — 4 x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 ) После сокращения избавимся от скобок и приведем подобные слагаемые: x ( x + 2 ) — 7 ( x — 2 ) = 8 x 2 + 2 x — 7 x + 14 = 8 Осталось решить квадратное уравнение: Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать: Требуется решить дробно-рациональное уравнение: x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0 Определим область допустимых значений: О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2 x 2 + 7 x + 10 ≠ 0 D = 49 — 4 · 10 = 9 x 1 ≠ — 7 + 3 2 = — 2 x 2 ≠ — 7 — 3 2 = — 5 Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой: a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 ) x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение: x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0 Сократим дроби, избавимся от скобок, приведем подобные слагаемые: x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 — — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0 x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0 x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0 2 x 2 + 9 x — 5 = 0 Потребуется решить квадратное уравнение: 2 x 2 + 9 x — 5 = 0 Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень. Дано дробно-рациональное уравнение, корни которого требуется найти: 4 x — 2 — 3 x + 4 = 1 В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю: 4 \ ( x + 4 ) x — 2 — 3 \ ( x — 2 ) x + 4 — 1 \ ( x — 2 ) ( x + 4 ) = 0 4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0 4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0 x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0 Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему: — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0 Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ: ( x — 2 ) ( x + 4 ) ≠ 0 Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль: — x 2 — x + 30 = 0 _ _ _ · ( — 1 ) Получилось квадратное уравнение, которое можно решить: Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения. Нужно решить дробно-рациональное уравнение: x + 2 x 2 — 2 x — x x — 2 = 3 x На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю: x + 2 \ 1 x ( x — 2 ) — x \ x x — 2 — 3 \ ( x — 2 ) x = 0 x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0 x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0 — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0 Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений. — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 ) Корни квадратного уравнения: x 1 = — 4 ; x 2 = 2 Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень. Найти корни уравнения: x 2 — x — 6 x — 3 = x + 2 Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю: x 2 — x — 6 \ 1 x — 3 — x \ ( x — 3 ) — 2 \ ( x — 3 ) = 0 x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0 x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0 0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0 Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений: Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ. Ответ: х — любое число, за исключением 3. Требуется вычислить корни дробно-рационального уравнения: 5 x — 2 — 3 x + 2 = 20 x 2 — 4 На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю: 5 \ ( x + 2 ) x — 2 — 3 \ ( x — 2 ) x + 2 — 20 \ 1 ( x — 2 ) ( x + 2 ) = 0 5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0 5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0 2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0 ( x — 2 ) ( x + 2 ) ≠ 0 Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение. Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни. Ответ: корни отсутствуют Нужно найти корни уравнения: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) Начнем с определения ОДЗ: — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0 При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим: x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 ) ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 ) ( x — 3 ) x + x = x + 5 Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме: x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0 Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета: x 1 · x 2 = — 10 x 1 + x 2 = 3 В этом случае подходящими являются числа: -2 и 5. Второе значение не соответствует области допустимых значений. Источник\) \(=0\), где \(P(x)\) и \(Q(x)\) — выражения с иксом (или другой переменной).
Как решаются дробно-рациональные уравнения?
Благо \(x_1\) и \(x_2\) мы уже нашли.Дробно-рациональные уравнения
Что такое дробно-рациональные уравнения
Как решаются дробно-рациональные уравнения
Примеры задач с ответами для 9 класса