- Рентгенографический контроль сварных соединений
- Свойства рентгеновских лучей
- Преимущества
- Недостатки
- Устройство и принцип работы оборудования
- Методика проведения контроля
- Меры по технике безопасности
- Радиографический метод контроля сварных соединений Ч.1 Контроль рентгеном
- Содержание
- Свойства рентгеновских лучей
- Сущность и особенности неразрушающего контроля сварки рентгеном
- Схема просвечивания сварного шва рентгеновскими лучами
- Чувствительность контроля радиографией
- Рентгеновские аппараты для контроля сварных швов
- Классификация рентгеновских аппаратов и область их применения
- Устройство рентгеновской трубки
- Технология контроля сварных швов рентгеном
Рентгенографический контроль сварных соединений
Во время соединения металлических деталей с помощью сварки может возникнуть ситуация, которая затруднит образование нормального однородного шва. Когда в сварочную ванну попадают посторонние предметы или элементы, а также выбран неправильный режим сваривания, то вполне возможно образование брака. Это приводит к тому, что шов будет иметь более низкое качество и сможет выдержать меньшее количество нагрузок, чем предполагалось. Далеко не все виды дефектов можно увидеть сразу, так как зачастую они имеют скрытый характер. В особенности это относится к мелким трещинам и порам. Требования к сварным соединениям здесь могут быть очень высокими, так что любой недочет может привести к серьезным последствиям.
Рентгенографический контроль сварных соединений
Рентгенографический метод контроля сварных соединений это один из самых достоверных способов. Данный метод особенно популярен при проверке соединений технологических трубопроводов, различного ответственного оборудования, металлических конструкций и прочих материалов, применяющихся в самых разнообразных отраслях. Чаще всего высокие нагрузки встречаются в строительстве. Рентген контроль сварных соединений проводится по ГОСТ 7512-86.
Данный принцип основан на поглощении лучей плотными средами. Чем более плотная структура, тем меньше лучей пройдет наружу. Если внутри шва есть трещины, раковины, поры и прочие полые дефекты, то количество прохождения лучей здесь будет значительно большим. Регистрирующее устройство сможет выявить наличие дефекта, его размер, место расположения и другие особенности. Такими качествами не обладает ни один другой метод. Рентгеновский контроль сварных соединений является детальным показателем состояния локальных участков металлоконструкций
Свойства рентгеновских лучей 
Лучи могут проходить через плотные непрозрачные тела, но чем выше плотность этих тел, тем ниже пропускание лучей. Проходимость зависит и от длины лучей. При большой длине им сложнее пройти сквозь плотные поверхности. Во время прохождения лучи поглощаются той поверхностью, с которой соприкасаются. Чем выше плотность, тем больше поглощение.
Принцип рентгенографическогой контроля сварных швов
Некоторые химические вещества при контакте с излучением получают видимое свечение. После окончания воздействия свечение прекращается, но некоторые вещества сохраняют заряд свечения еще на некоторое время. Это свойство является основой для создания рентгеновских снимков в данном методе. Воздействие лучей на светочувствительную часть фотопластинок создает изображение внутреннего состояния шва.
При воздействии лучей на клетки организма они производят определенные воздействия, которые зависят от типа ткани и интенсивности полученной дозы. Это может использоваться в медицине, но также имеет и обратный эффект, который проявляется в лучевой болезни.
Лучи могут ионизировать воздух, расщепляя составные части воздушной массы на отдельные частицы, имеющие электрический заряд. Из-за этого воздух может проводить электричество.
Преимущества 
- Рентгенографический контроль сварных соединений трубопроводов является одним из самых точных и надежных методов дефектоскопии;
- Можно увидеть скрытые дефекты;
- Возможно определение абсолютных и относительных размеров бракованного места;
- Скорость проведения процедур достаточно высокая.
Недостатки 
- Эффективность метода зависит от правильности установки параметров;
- Оборудование для его проведения имеет высокую стоимость;
- Здесь нужно использовать особую пленку для фиксации результата;
- Это опасный для здоровья метод дефектоскопии сварных швов.
Устройство и принцип работы оборудования 
Излучающий элемент представлен в виде вакуумного сосуда, в котором находится три электрода: анод, накал катода и катод. Сами рентгеновские лучи возникают тога, когда заряженные частицы получают сильное ускорение. Это может случиться и при высокоэнергетическом переходе, что происходит в оболочке атомов. Рентгенографические трубки используют оба этих варианта. Основным конструктивным элементом устройства выступает анод и катод.
Устройство для рентгенографическогой контроля сварных соединений
Электроны, которые испускаются катодом получают ускорение от различных электрических потенциалов, находящихся в области между анодом и катодом. В это время рентгеновские лучи еще не испускаются, по причине малого своего количества. Они ударяются об анод, после чего происходит их резкое торможение. За счет этого происходит генерация лучей в рентгеновском диапазоне. В это же время из внутренних оболочек атомов анода выбиваются электроны. На места выбитых частиц становятся другие электроны. Выпускаемое излучение приобретает характерные черты, которыми обладает материал анода.
Когда лучи уже вышли, то они передвигаются в соответствии с заданным направлением сквозь выбранный участок шва. Затем они сталкиваются с плотной поверхностью и часть остается в металле. Остальные частицы, которым удалось прорваться, попадают на пленку. Там отображается интенсивность излучения в каждом отдельном месте. При наличии пустых мест в структуре наплавленного металла, количество лучей становится большим. Таким образом можно выявить где находится тот или иной дефект, а также какой он формы и размера.
Методика проведения контроля 
Методика проведения рентгенографического контроля сварных соединений очень схожа с радиографическим контролем. Первым делом происходит настройка аппаратуры под определенную плотность металла, чтобы излучение смогло пройти сквозь его поверхность. Затем происходит подготовка сделанного шва к контролю. Для этого с него оббивают шлак, обрабатывают до требуемой высоты валика и зачищают саму поверхность.
После этого изделие перемещается в аппарат на то место, где будет происходить выпуск лучей. Оно должно находиться между излучателей и фотопленкой. Затем включается аппарат и лучи моментально проникают сквозь сварной шов, попадая в итоге на пленку. На ней отображаются все неровности интенсивности, которые показывают наличие дефектов.
Данный процесс может оказать вред здоровью, так что необходимо соблюдать все правила техники безопасности.»
Меры по технике безопасности
Чтобы сохранить свое здоровье при частом проведении подобных процедур, следует придерживаться ряда предписанных требований. В первую очередь, устройство должно быть экранировано, чтобы излучение не распространялось по всему помещению, а действовало только в строго направленное место. Для экранирования зачастую используют металлические пластины. Они же могут пригодиться для обустройства стен помещения, которые также должны быть ограждением для распространения излучения.
Во время работы следует держаться как можно дальше от излучателя, насколько это возможно. Также стоит уменьшить время пребывания в помещении во время работы техники. В данном месте не должно быть ни каких посторонних людей. Все работники должны иметь средства индивидуальной защиты.
Все работы должны проводиться только при условии, что техника исправна и правильно настроена. Стоит понимать, что минимальной дозы излучения сложно избежать, но она со временем накапливается, если процедуры проводятся часто и это может вызвать серьезные осложнения, перерастающие в хроническую профессиональную болезнь. Исходя из этого, необходимо следить за тем, какую дозу человек получает за один проход действия аппарата. Для этого используются специальные дозиметры. Также нужно обратить внимание на ионизацию воздуха в помещении, так как при сильно высоком ее уровне может случиться электрический разряд, потому что воздушная масса перестанет быть диэлектриком.
Источник
Радиографический метод контроля сварных соединений Ч.1 Контроль рентгеном
Содержание
Свойства рентгеновских лучей
Рентгеновские лучи — это один из видов электромагнитного излучения. Длина волны рентгеновских лучей существенно отличается от длины волны видимого света и составляет 6*10-13 — 10-9м. Лучи рентгена ионизируют газы и воздействуют на живых существ. Они обладают способностью нагревать предметы на которые воздействуют и они не отклоняются электрическими и магнитными полями.
Рентгеновское излучение обладает большей энергией, чем лучи видимого света и способно воздействовать на фотоплёнку и фотобумагу и поглощаться разными веществами в различной степени. Например, металлом и неметаллическими включениями такие лучи поглощаются по-разному.
Такие особенности рентгеновских лучей обусловили их широкое применение в различных областях, в том числе и для неразрушающего рентгеновского контроля сварных соединений.
Сущность и особенности неразрушающего контроля сварки рентгеном
С помощью такого метода контроля можно выявить такие дефекты в сварных соединениях, как поры, раковины, сварные трещины, непровары, неметаллические включения в металле.
Контроль сварного шва рентгеном происходит по следующей схеме: поток рентгеновского излучения направляется на проверяемое соединение, а с обратной стороны соединения помещают фотобумагу, рентгеновскую бумагу, или же специальную плёнку, чувствительную к лучам рентгена.
Различные сварные дефекты хуже поглощают лучи, чем однородный металл и на плёнке они проявятся в виде светлых пятен. По их очертаниям и величине можно судить о форме и размерах сварных дефектов. Максимально возможная толщина сварного соединения, которое можно проконтролировать рентгеном, составляет 100мм.
Схема просвечивания сварного шва рентгеновскими лучами
Схема контроля рентгеном сварного соединения представлена на рисунке слева, где позициями обозначены:
1 — рентгеновская трубка; 2 — проверяемое сварное соединение; 3 — фотоплёнка (или рентгеновская бумага).
Эффективность радиографического контроля
Радиографический контроль позволяет эффективно обнаруживать внутренние дефекты в сварных соединениях: различные виды сварочных трещин, непровары, раковины и скопления пор, шлаковых и неметаллических включений, скопления тугоплавких металлов, например, вольфрама.
При радиографическом контроле невозможно обнаружить нарушения сварного шва, размер которых меньше удвоенной чувствительности контроля. Также не обнаруживаются непровары и трещины, направление которых совпадает с направлением просвечивания. Если изображения дефектов на полученных снимках совпадают с какими-либо другими изображениями (других предметов, острых углов или резких перепадов толщин металла), то такие дефекты также остаются «невидимыми» для дефектоскопа.
Чувствительность контроля радиографией
При радиографическом методе неразрушающего контроля его чувствительность выражается в процентах. Определить чувствительность контроля можно по следующему выражению:
Где m — наименьшая величина сварного дефекта, мм; s — толщина контролируемого сварного соединения, мм.
На показатель чувствительности радиографического контроля оказывают влияние следующие факторы:
1. Величина энергии прямого просвечивания
2. Толщина контролируемого сварного соединения и плотность металла
3. Место расположения дефекта в металле и форма дефекта
4. Геометрические размеры проверяемого соединения и его поверхность
5. Источник излучения и фокусное расстояние
6. Оптическая плотность, контраст снимка, качество плёнки или фотобумаги
В теории учесть совокупность всех эти факторов не представляется возможным, поэтому на практике чувствительность контроля устанавливают экспериментально. Она может быть определена как наименьший размер проволочного или канавочного эталона, проявляемого на снимке.
Рентгеновские аппараты для контроля сварных швов
Рентгеновский аппарат предназначен для генерирования лучей рентгена с нужными характеристиками. В состав рентгеновского аппарата входят: рентгеновская трубка, генератор тока очень высокого напряжения и приборы для управления.
Классификация рентгеновских аппаратов и область их применения
Рентгеновские аппараты, в зависимости от характера анодного напряжения, бывают двух типов: аппараты непрерывного действия и аппараты импульсные. В импульсных аппаратах под воздействием тока, напряжением несколько десятков киловольт, формируется мощный импульс излучения. Такие аппараты малогабаритны и легко транспортируемы. Их высокая манёвренность позволяет их использовать в полевых условиях — при монтажных работах, на строительных площадках и др.
В зависимости от особенностей конструкции, рентгеновские аппараты бывают кабельные и моноблочные. В моноблочных аппаратах рентгеновская трубка и высоковольтный трансформатор находятся в одном блоке. Такие блоки достаточно компактны для транспортирования. Такая конструкция позволяет их использовать преимущественно для контроля в полевых условиях. Но существуют также не передвижные моноблочные аппараты.
В кабельных рентгеновских аппаратах рентгеновская трубка находится в защитном корпусе, а высоковольтный трансформатор — в отдельном узле, от которого электрический ток высокого напряжения подаётся к рентгеновской трубке. Кабельные аппараты не так мобильны, как моноблочные и поэтому используются в пределах какого-либо цеха или лаборатории.
По величине анодного напряжения аппараты бывают следующих типов: до 160кВ и от 160 до 400кВ. Для рентгеновской дефектоскопии труднодоступных участков используют портативные рентгеновские аппараты, оснащённые портативными излучателями.
Устройство рентгеновской трубки
Рентгеновские лучи формируются в анодах специальных рентгеновских трубок. Получаются они при торможении быстро летящих электронов. Трубка представляет собой баллон, из которого откачивают воздух.
Устройство рентгеновской трубки схематично показано на рисунке слева. Внутри баллона находятся два электрода — анод (поз.1) и катод (поз.4). Катод изготовлен из вольфрама, к нему подводится постоянный электрический ток, напряжением от нескольких десятков, до сотен киловольт.
Питание катода происходит при помощи повышающего трансформатора и выпрямителя. Под воздействием очень высокого напряжения, вольфрамовый катод нагревается и излучает поток электронов (поз.3). Высокое напряжение на катоде необходимо, чтобы сообщить электронам требуемую кинетическую энергию.
Анод (поз.1) изготовлен из вольфрамомолибденового сплава и он необходим для торможения быстролетящих электронов. Их поток, двигающийся с большой скоростью, направлен от катода к аноду. При ударе об анод, электроны теряют свою кинетическую энергию, происходит их торможение, а часть кинетической энергии, потерянной электронами, превращается в рентгеновское излучение, состоящее из фотонов тормозного излучения.
При этом следует понимать, что рентгеновские лучи вредны для здоровья человека, поэтому необходима защита при работе с рентгеновскими аппаратами. Для защиты рентгеновскую трубку изолируют защитным свинцовым кожухом, в котором сделано узкое отверстие для выхода потока рентгеновских лучей, который направляют на проверяемое сварное соединение.
Технология контроля сварных швов рентгеном
Проведение рентгеновской дефектоскопии включает в себя следующие технологические операции:
1. Зачистка поверхности. Перед проверкой поверхность сварного соединения необходимо подготовить. Для этого его поверхность зачищают от шлака и загрязнений, иначе они будут отображаться на плёнке и затруднять расшифровку изображения на ней.
2. Разметка соединения. Проверяемое соединение разбивается на участки. На каждом из таких участков должен находиться специальный маркировочный знак и эталон чувствительности. Эти знаки и эталоны устанавливают на сварном шве, со стороны источника излучения.
При этом канавочные эталоны необходимо располагать на расстоянии 5мм, или более, с направлением канавок поперёк шва. Проволочные эталоны крепят на сам сварной шов. Направление проволок также должно быть поперёк шва.
В некоторых случаях, когда нет возможности разместить эталоны со стороны источника излучения, при контроле цилиндрических, шарообразных и других пустотелых сварных соединений, эти эталоны устанавливают со стороны фотобумаги или рентгеновской плёнки.
3. Просвечивание сварного соединения. Схемы просвечивания могут быть разные, в зависимости от типа сварного соединения. Гост 7512 рекомендует следующие схемы, представленные на рисунке справа:
4. Просмотр и расшифровка результатов. Анализировать полученные снимки необходимо после полного их высыхания в затемнённой комнате, используя для этой цели осветители-негатоскопы. Расшифровка снимков — это сложная и трудоёмкая задача, требующая большой ответственности и высокого уровня квалификации от проверяющего работника.
Для расшифровки выбирают плёнки, на которых отсутствуют различные пятна, загрязнений и механические повреждения эмульсионного слоя, т.к. такие дефекты делают процесс расшифровки сложным и неточным. На плёнке обязательно должны прослеживаться нанесённые ограничительные маркировочные знаки, метки и эталоны чувствительности. Качество проведённой рентгеновской дефектоскопии оценивают по результатам обнаружения эталонных дефектов. В качестве условной единицы уровня качества принимают размер наименьшего из найденных эталонных дефектов.
Источник