Ременные передачи способы натяжения ремня

Ремённые передачи. Материалы ремней. Способы натяжения ремней. Кинематика и геометрия. Силы в передаче

Страницы работы

Содержание работы

Тема 17: Ремённые передачи

17.1. Общие сведения

Открытая ремённая передача (рис. 17.1) состоит из двух шкивов и ремня, охватывающего шкивы. В состав передачи могут также входить натяжные устройства и ограждения. Возможно применение нескольких ремней и нескольких шкивов.

Рис. 17.1. Открытая ремённая передача

По принципу работы различают передачи трением и зацеплением (зубчато-ремённые). В передачах трением нагрузка передаётся силами трения, возникающими между шкивами и ремнем вследствие его натяжения.

Ремни передач трением по форме поперечного сечения подразделяют на плоские (рис. 17.2, а), клиновые (рис. 17.2, б), поликлиновые (рис. 17.2, в), круглые (рис. 17.2, г) и квадратные (рис. 17.2, д).

Рис. 17.2. Сечения ремней

Обычно с помощью ремня передают движение между параллельными валами, вращающимися в одну сторону (рис. 17.1). Благодаря закручиванию ремня реализуют также передачи: перекрестную, полуперекрёстную и угловую (рис. 17.3, а, б, в).

Рис.17.3. Виды ремённых передач

17.2. Материалы ремней

Ремни должны обладать высокой прочностью при переменных напряжениях, износостойкостью, максимальным коэффициентом трения на рабочих поверхностях, минимальной изгибной жёсткостью. Повышенный коэффициент трения обеспечивают клиновой формой ремня, пропиткой ремня и применением фрикционных обкладок. В машиностроении применяют следующие основные типы стандартных ремней.

Кожаные ремни обладают хорошей тяговой способностью и высокой долговечностью, хорошо переносят колебания нагрузки. Имеют ограниченное применение в связи с высокой стоимостью. Чувствительны к влажности окружающей среды.

Прорезиненные ремни состоят из нескольких слоёв хлопчатобумажной ткани, связанных между собой вулканизированной резиной. Ремни эластичные, малочувствительные к влаге и колебаниям температуры, обладают высокой тяговой способностью. Они имеют доступную стоимость и являются наиболее распространёнными. Чувствительны к попаданию масла, бензина и щелочей.

Хлопчатобумажные ремни изготовляют как цельную ткань с несколькими слоями хлопчатобумажной основы, пропитанной специальным составом. Ремни лёгкие и гибкие, работают на шкивах сравнительно небольших диаметров при высоких скоростях. Тяговая способность и долговечность ниже, чем у прорезиненных.

Шерстяные ремни имеют основу из многослойной шерстяной ткани, пропитанной специальным составом. Обладая значительной упругостью, они работают при резких колебаниях нагрузки и при малых диаметрах шкивов. Ремни мало чувствительны к температуре, влажности, кислотам. Тяговая способность ниже, чем у других типов ремней.

Плёночные ремни изготовляют из полиамидных лент малой толщины, армированных кордом из капрона или лавсана. Для увеличения сцепления на рабочую поверхность наклеивают фрикционный слой. Обладают высокой статической и усталостной прочностью. Могут работать при малых диаметрах шкивов с высокой быстроходностью. Весьма перспективны.

Клиновые, поликлиновые, зубчатые и быстроходные плоские ремни изготовляют бесконечными замкнутыми. Плоские ремни, кроме плёночных, выпускают преимущественно конечными в виде длинных лент, концы которых соединяют.

17.3. Способы натяжения ремней

Условием нормальной работы ремённых передач является наличие натяжения ремня, которое осуществляют следующими способами:

1) предварительным упругим растяжением ремня;

2) перемещением одного из шкивов относительно другого;

3) натяжным роликом;

4) автоматическим устройством, обеспечивающим регулирование натяжения ремня в зависимости от передаваемой нагрузки;

5) перешивкой конечного ремня.

При первом способе натяжение назначают по наибольшей нагрузке с запасом на вытяжку ремня. Долговечность ремня при этом снижается. Периодическое натяжение ремня перемещением двигателя на специальных салазках (рис. 17.4, а) является наиболее распространённым способом натяжения в приводах машин.

а) б)

в)

Рис. 17.4. Способы натяжения ремней

Натяжные ролики (рис. 17.4, б) обеспечивают постоянное натяжение плоских ремней. Долговечность ремня понижается за счёт появления знакопеременных напряжений. Устройство для автоматического натяжения ремней (рис. 17.4, в) является наиболее совершенным для долговечности ремня, однако имеет высокую стоимость. Периодическая перешивка плоского конечного ремня – достаточно надёжное средство восстановления натяжения. При этом не следует забывать, что соединение – наиболее слабый элемент изделия.

17.4. Оценка и применение

Ремённая передача является одним из старейших типов механических передач, сохранивших своё значение до настоящего времени. Оценку ремённой передачи и других передач выполняют в сравнении с наиболее распространёнными зубчатыми передачами.

Читайте также:  Известные способы определите протяженность анд

1. Простота конструкции и эксплуатации.

2. Возможность передачи движения на значительные расстояния (до 15 м).

3. Плавность и бесшумность работы.

4. Самопредохранение от перегрузки.

1. Большие габариты (в 5 раз).

2. Значительная нагрузка на валы и опоры (в 2…3 раза).

3. Некоторое непостоянство передаточного отношения.

Источник

ПОДРОБНО О РЕМЁННОЙ ПЕРЕДАЧЕ: история, виды, передаточное отношение

История

Ремённая передача – одна из древнейших и простых механических передач, в которой используются приводные ремни и специальные колеса — шкивы. По некоторым источникам, ременная передача впервые документально описана китайским философом, поэтом и политиком Ян Сюном (53 год до н. э. – 18 год н. э.) периода империи Хань в тексте «Словарь местных выражений». Описанное устройство использовали ткачи в своей работе с шелком.

Кстати, слово «ремённая» записывается через букву «ё», на которую и нужно ставить ударение. Но в печати, например, в нашем следующем заголовке, точки над «ё» могут опускать. Это не является ошибкой, но не забудьте ставить ударение правильно.

На средневековых картинах можно увидеть механизм — самопрялку, в которой принцип ремённой передачи используется для ускорения получения пряжи. Большое развитие ремённая передача вместе с другими механизмами получила во времена английской промышленной революции (1780-1830 гг.), которая началась с изобретения в 1769 году паровой машины. Небольшие кустарные ремесленные производства начали вытесняться фабричным трудом с большим количеством машин.

На приведенной ниже картинке показаны примеры использования ремённой передачи в современных технических устройствах – от двигателя внутреннего сгорания автомобиля до 3D-принтера.

Устройство ременной передачи

Ведущее и ведомое колесо – это шкивы. Их соединяет приводной ремень. Ведущий шкив — тот, который крутит мотор или другая внешняя сила, а ведомый – следующий за ним. Часто для предотвращения соскакивания ремня на ободе шкива делают канавку или бортики.

Чтобы ремень не проскальзывал, его нужно хорошо натянуть. Кто ездил на велосипеде хорошо знает проблему, что плохо натянутая цепь так и норовит слететь со звездочки, а если перетянешь – трудно ехать и она легко порвется. Для натяжения ремня или устранения его колебаний могут использоваться натяжные и прижимные ролики.

Диаметр ведущего шкива мы обозначим английской буквой d1, а ведомого — буквой d2. Нам это понадобится при расчетах.

Ремень является самым дешевым устройством в данном механизме. Но за счет него ремённая передача обеспечивает плавность хода и снижение шума. Такая передача способна амортизировать рывки и снижать нагрузку на мотор. Так, если на циркулярном станке резко заклинит диск при распиливании дубовой доски, электромотор остановится не сразу, а с задержкой за счет упругости ремня и его проскальзывания.

Рассмотрим следующую схему.

Ведущая ветвь ремня — та, которая набегает на ведущий шкив. Она при работе передачи испытывает растяжение.

Ведомая ветвь ремня — та, которая сходит с ведущего ремня и набегает на ведомый. Она при работе сжимается и расслабляется.

Сжатие и растяжение двух ветвей компенсируется. Иначе ремень рвется. При переходе с одной ветви на другую ремень упруго сжимается или растягивается. В этих зонах на шкиве происходит упругое скольжение ремня. Из-за изменения величины упругого скольжения передаточное отношение ремённой передачи непостоянное и может увеличиваться или уменьшаться в зависимости от нагрузки. При очень большой нагрузке ремень может упруго скользить по всей поверхности шкива.

Также важно знать про угол обхвата ремнём шкива. Чем больше угол обхвата, тем больше площадь контакта, тем больше полезная сила трения. При большой разнице в диаметрах шкивов этот угол может быть очень маленьким. Ремень при этом может проскальзывать. Чтобы увеличить угол обхвата без увеличения межосевого расстояния можно использовать прижимной ролик (смотри картинку ниже). В таком случае устанавливают ролик на ведомую ветвь, которая расслаблена, иначе ведущая ветвь растянется еще сильнее и износ ремня значительно вырастет.

Открытая, перекрестная и полуперекрестная передача

Повышающая и понижающая передача

Рассмотрим нижнюю картинку. Зеленый шкив с помощью ручки крутит персонаж с силой F. Это ведущий шкив. Синий шкив крутится за счет ремня. Это ведомый шкив. К нему на вал подвешен груз с максимально возможной массой, которую может поднять механизм.

Читайте также:  Что такое лепка конструктивным способом

Рис. 8. Виды ремённых передач

  1. В первом случае диаметр ведущего и ведомого шкивов одинаковый. Скорость и сила на выходе не поменяется.
  2. Во втором случае диаметр ведущего шкива меньше ведомого. Скорость на выходе упадет. Такая передача называется понижающей. Сила при этом увеличится и механизм сможет поднять груз большей массы, чем первый.
  3. В третьем случае диаметр ведущего шкива больше ведомого. Скорость на выходе увеличится. Такая передача называется повышающей. Сила при этом уменьшится и механизм сможет поднять груз меньшей массы, чем первый и второй.

Почему так происходит? Любой сложный механизм можно представить через простые механизмы. В данном случае ручка, за которую тянет персонаж и радиус к точке на окружности, которую толкает приводной ремень, образуют рычаг. Посмотрите на следующий рисунок.

Рис. 9. Схема понижающей и повышающей ремённой передачи

Короче плечо рычага к нагрузке (радиус шкива) – больше сила, но меньше пройденный путь.

Длиннее плечо рычага к нагрузке (радиус шкива) – меньше сила, но больше пройденный путь.

Эти схемы с понижающей и повышающей ремённой передачей наглядно демонстрируют работу золотого правила механики — за выигрыш в силе приходится платить таким же проигрышем в расстоянии (схема 1) или за выигрыш в расстоянии приходится платить таким же проигрышем в силе (схема 2).

Передаточное отношение (передаточное число)

При создании ремённой передачи нужно понимать, во сколько мы выиграем или проиграем в скорости и силе, чтобы собрать устройство с нужными характеристиками.

В этом нам поможет передаточное отношение, которое записывается буквой i. Оно показывает, во сколько раз снизилась скорость вращения на выходе. Согласно золотому правилу механики во столько же раз увеличится сила.

Например, передаточное отношение i = 1 : 1 показывает, что 1 оборот на входе даст 1 оборот на выходе, а отношение i = 5 : 1 показывает, что 5 оборотов на входе дает 1 оборот на выходе, то есть скорость упала в 5 раз (передача понижающая).

Если дробь можно сократить, её сокращают. Например, i = 5 : 25 = 1 : 5 (передача повышающая).

Передаточное отношение можно записать в виде числа, поделив числитель на знаменатель. Например, i = 5 : 1 = 5, или i = 1 : 4 = 0,25. Можно сделать вывод, что:

Формулу для расчета передаточного отношения можно вывести из правила рычага. Передаточное отношение для ремённой передачи рассчитывается так:

Узнать размеры шкивов можно с помощью линейки. Самый точный метод измерения диаметра – с помощью штангенциркуля.

Если передача многоступенчатая (двух-, трехступенчатая и т.д.), то общее передаточное отношение будет вычисляться как произведение отдельных передаточных отношений. Передаточное отношение для шкивов, жестко закрепленных на общей оси, не считается — скорость их вращения будет всегда одинаковой!

Эта формула справедлива для этого рисунка:

Таким же образом передаточное отношение можно посчитать через соотношения радиусов.

Виды приводных ремней

Видов ремней достаточно много, так как используются они в разных условиях. Где-то нужно передать очень большую мощность так, чтобы ремень не порвался и не растянулся. Где-то ремень не должен проскальзывать. Где-то ремень должен крутиться очень-очень быстро и мало изнашиваться со временем. А где-то нужно передать вращение на большое расстояние и под углом.

Очень распространенная классификация ремней – по поперечному сечению или форме. Основные виды: 1 — плоские ремни, 2 – клиновые ремни, 3 – ремни круглого сечения (пассики), 4 – многоручьевые ремни (или поликлиновые), 5 – зубчатые ремни.

В крупной промышленной технике самые распространенные ремни – клиновые и поликлиновые. Они достаточно толстые по сечению и имеют увеличенную за счет боковой поверхности площадь сцепления со шкивами.

В небольших электронных устройствах чаще используются плоские ремни и пассики (ремни с круглым сечением).

Плоские ремни широко использовались в 19-м и начале 20 века на фабриках для передачи движения на несколько машин с одного линейного вала (англ. line shaft). Они широко применялись и применяются в лесопильных станках, молотилках, электрогенераторах.

В станках с ЧПУ (3D-принтерах, плоттерах, лазерных станках) используются зубчатые ремни, так-так они сохраняют постоянное передаточное отношение и не проскальзывают.

Преимущества и недостатки

Как и у любого устройства, у ремённой передачи есть свои плюсы и минусы по сравнению с другими механизмами. Выделим важные из них.

Читайте также:  Характеристика первобытного способа производства

Преимущества:

  • простота конструкции;
  • малая стоимость:
  • малая шумность;
  • плавность работы;
  • сглаживание ударных перегрузок за счет упругости ремня;
  • возможность менять направление вращения под разным углом;
  • возможность передавать вращение на большое расстояние.

Недостатки:

  • большие габариты конструкции;
  • плохая работа на больших скоростях (появление вибраций);
  • большая нагрузка на оси (валы, подшипники);
  • непостоянное передаточное отношение при разной нагрузке (из-за упругого скольжения);
  • малый срок службы ремня по сравнению с зубчатыми колесами;
  • биение приводного ремня при его слабом натяжении;
  • необходимость в дополнительных элементах при большой длине ремня или малом угле обхвата;
  • увеличение износа приводного ремня или осей при неправильном натяжении.

Определения

Эти термины важно запомнить.

Ведущая ветвь ремня — набегает на ведущий шкив. При работе передачи растягивается.

Ведомая ветвь ремня — сходит с ведущего ремня и набегает на ведомый. При работе передачи расслабляется.

Межосевое (межцентровое) расстояние – кратчайшее расстояние между осями шкивов.

Натяжной ролик (леникс, от нем. lenix, lenixrolle — натяжной ролик) – элемент ремённой или цепной передачи; свободно вращающееся на оси колесо (шкив, звездочка, ролик), которое используется для регулирования натяжения ремня или цепи. Например, используется в тракторах для натяжения гусениц или в двигателе автомобиля для натяжения ремня ГРМ (газораспределительного механизма).

Пассик (от польского pasek — ремешок) – исторически вошедшее в наш оборот название приводного ремня круглого сечения. Слово «пассик» имеет польское происхождение. Его появление в русском словаре связывают с 80-ми годах 20-го века, когда им называли соответствующий элемент в импортном польском магнитофоне. Пассик, как правило, выполнен из резины или других полимерных материалов. Пассики использовались в устройстве протяжного механизма магнитной ленты старого кассетного магнитофона – он хорошо сглаживал рывки от электромотора и предохранял от искажений звука. «Пассики» входят в комплект конструктора Lego WeDo или ресурсного набора Lego MINDSTORMS Education EV3. В общем, всякий пассик — приводной ремень, но не каждый приводной ремень – пассик.

Приводной ремень – гибкий замкнутый элемент (ремень) для передачи вращения между двумя шкивами. Вращение передается за счет силы трения (гладкий ремень) или силы зацепления (ремень с зубчиками). Может иметь разную форму: бывают плоские ремни, зубчатые ремни, клиновидные ремни.

Ремённая передача (англ. belt drive)– механизм, предназначенный для передачи вращательного движения с помощью силы трения или зубчатого зацепления замкнутой гибкой связи (ремня) с помощью колес (шкивов), закрепленных на входном и выходном вале.

Угол обхвата – угол прилегания ремня к шкиву.

Шкив – фрикционное (англ. friction — трение) колесо с ободом или канавкой по окружности. Передает или принимает движение от приводного ремня. В отличие от блока, который имеет похожую форму, шкив всегда передавет усилие с оси на ремень, либо принимает усилие с ремня на ось. Блок же всегда свободно вращается на оси и обеспечивает изменение направления движения каната/троса, а также изменяет прикладываемую силу.

Вопросы

1. Что ты можешь сказать о ремённых передачах по этим двум изображениям? В чем их отличие и из каких элементов они состоят?

Задачи

1. Мальчик Ваня измерил штангенциркулем ведущий и ведомый шкив. Диаметр первого составил 12 миллиметров, второго – 32 миллиметра. Какое передаточное отношение у этой ремённой передачи?

2. Угловая скорость вращения вала мотора – 420 оборотов в секунду. Какая угловая скорость будет у ведомого шкива, если передаточное отношение i = 12 : 1?

3. Собери одноступенчатую понижающую ремённую передачу из деталей Lego. В качестве шкивов можно использовать диск узкого или большого колеса и желтые втулки. На ведущую ось установи ручку, на ось ведомого шкива установи стрелку, чтобы считать обороты.

Измерь с помощью линейки или штангенциркуля диаметры шкивов.

Заполни таблицу. Проверь опытным путем полученное значение с помощью стрелки.

4. Собери двухступенчатую понижающую ремённую передачу с ручкой и стрелкой (пример — в 3 задаче). Посчитай передаточное отношение через диаметры. Проверь полученное значение опытным путем.

Полезное видео

Подписывайтесь на нашу группу в ВКонтакте и Одноклассниках и получайте уведомления о новых статьях.

При копировании материалов сайта не забудьте указать источник.

Источник

Оцените статью
Разные способы