Реляционный способ организации базы данных пример

Реляционный способ организации базы данных пример

По Вашему запросу ничего не найдено.

Рекомендуем сделать следующее:

  • Проверьте правильность написания ключевых слов.
  • Используйте синонимы введенных Вами ключевых слов, например “приложение” вместо “программное обеспечение”.
  • Попробуйте воспользоваться одним из популярных поисковых запросов ниже.
  • Начните новый поиск.

Что такое реляционная база данных?

Реляционные базы данных представляют собой базы данных, которые используются для хранения и предоставления доступа к взаимосвязанным элементам информации. Реляционные базы данных основаны на реляционной модели — интуитивно понятном, наглядном табличном способе представления данных. Каждая строка, содержащая в таблице такой базы данных, представляет собой запись с уникальным идентификатором, который называют ключом. Столбцы таблицы имеют атрибуты данных, а каждая запись обычно содержит значение для каждого атрибута, что дает возможность легко устанавливать взаимосвязь между элементами данных.

Пример реляционной базы данных

В качестве примера рассмотрим две таблицы, которые небольшое предприятие использует для обработки заказов продукции. Первая таблица содержит информацию о заказчиках: каждая запись в ней включает в себя имя и адрес заказчика, платежные данные и информацию о доставке, номер телефона и т. д. Каждый элемент информации (атрибут) помещен в отдельный столбец базы данных, которому назначен уникальный идентификатор (ключ) для каждой строки. Во второй таблице—(с информацией о заказе) каждая—запись содержит идентификатор заказчика, совершившего заказ, название заказанного продукта, его количество, размер или цвет и т. д. Записи в этой таблице не содержат таких данных, как имя заказчика или его контактные данные.

У обеих таблиц есть только один общий элемент — идентификатор столбца (ключ). Благодаря наличию этого общего столбца реляционные базы данных могут устанавливать взаимосвязи между двумя таблицами. Когда приложение для обработки заказов передает заказ в базу данных, база данных обращается к таблице со сведениями о заказах, извлекает сведения о продукции и использует идентификатор заказчика из этой таблицы, чтобы найти сведения об оплате и доставке в таблице с информацией о нем. Затем на складе подбирают нужный продукт, заказчик своевременно получает свой заказ и производит оплату.

Структура реляционных баз данных

Реляционная модель подразумевает логическую структуру данных: таблицы, представления и индексы. Логическая структура отличается от физической структуры хранения. Такое разделение дает возможность администраторам управлять физической системой хранения, не меняя данных, содержащихся в логической структуре. Например, изменение имени файла базы данных не повлияет на хранящиеся в нем таблицы.

Разделение между физическим и логическим уровнем распространяется в том числе на операции, которые представляют собой четко определенные действия с данными и структурами базы данных. Логические операции дают возможность приложениям определять требования к необходимому содержанию, в то время как физические операции определяют способ доступа к данным и выполнения задачи.

Чтобы обеспечить точность и доступность данных, в реляционных базах должны соблюдаться определенные правила целостности. Например, в правилах целостности можно запретить использование дубликатов строк в таблицах, чтобы устранить вероятность попадания неправильной информации в базу данных.

Реляционная модель

В первых базах данных данные каждого приложения хранились в отдельной уникальной структуре. Если разработчик хотел создать приложение для использования таких данных, он должен был хорошо знать конкретную структуру, чтобы найти необходимые данные. Такой метод организации был неэффективен, сложен в обслуживании и затруднял оптимизацию эффективности приложений. Реляционная модель была разработана, чтобы устранить потребность в использовании разнообразных структур данных.

Она обеспечила стандартный способ представления данных и отправки запросов, которые могли быть использованы в любых приложениях. Разработчики уяснили, что таблицы являются ключевым преимуществом реляционных баз данных, так как обеспечивают интуитивно понятный, эффективный и гибкий способ хранения структурированной информации и получения к ней доступа.

Со временем, когда разработчики стали использовать язык структурированных запросов (SQL) для записи данных в базу и отправки запросов, стало очевидным и другое преимущество реляционной модели. Вот уже на протяжении многих лет SQL широко используется в качестве языка запросов в базах данных. Он основан на алгоритмах реляционной алгебры и четкой математической структуре, что обеспечивает простоту и эффективность при оптимизации любых запросов к базе данных. Для сравнения: при использовании других подходов приходится создавать отдельные, уникальные запросы.

Преимущества реляционных баз данных

Компании всех типов и размеров используют простую, но функциональную реляционную модель для обслуживания разнообразных информационных потребностей. Реляционные базы данных применяются для отслеживания товарных запасов, обработки торговых транзакций через Интернет, управления большими объемами критически важных данных заказчиков и т. д. Реляционные базы данных можно рекомендовать для обслуживания любых информационных потребностей, где элементы данных связаны между собой и необходимо обеспечивать безопасное и надежное управление ими на основе правил целостности.

Реляционные базы данных появились в 1970-х годах. На сегодняшний день преимущества реляционного подхода сделали его самой распространенной моделью для баз данных в мире.

Целостность данных

Реляционная модель наиболее эффективно поддерживает целостность данных во всех приложениях и копиях (экземплярах) базы данных. Например, когда заказчик кладет деньги на счет с помощью банкомата, а затем проверяет баланс на мобильном телефоне, он ожидает, что поступившие средства сразу же отобразятся на счете. Реляционные базы данных отлично подходят для обеспечения целостности данных в различных экземплярах базы в одно и то же время.

Другие типы баз данных не могут одновременно поддерживать целостность больших объемов данных. Некоторые современные типы баз данных, такие как NoSQL, обеспечивают только так называемую “окончательную целостность.” Это значит, что, когда выполняется масштабирование данных или несколько пользователей одновременно используют одни и те же данные, необходимо некоторое время на “внесение изменений”. В некоторых случаях окончательная целостность вполне приемлема (например, для обновления позиций в товарном каталоге), однако для критически важной операционной деятельности бизнеса (например, транзакций с использованием корзины) реляционные базы представляют собой фундаментальный стандарт.

Читайте также:  Способы хранения персональных данных

Фиксация изменений и атомарность

В реляционных базах данных используются очень детальные и строгие бизнес-правила и политики в отношении фиксации изменений в базе данных (то есть сохранения изменений в данных на постоянной основе). Рассмотрим для примера складскую базу данных, в которой отслеживаются три запчасти, всегда использующиеся в комплекте. Когда одну из них извлекают из товарных запасов, две другие также должны извлекаться. Если одна из трех запчастей недоступна, две другие также не могут быть проданы отдельно, то есть, чтобы в базу данных можно было внести изменения, должны быть доступны все три запчасти. Реляционная база данных не разрешит сохранять изменения, если они не касаются всех трех запчастей. Эту особенность реляционных баз данных называют атомарностью или неразрывностью. Неразрывность необходима для сохранения точности данных в базе и обеспечения соответствия с правилами, нормативными положениями и бизнес-политиками.

Реляционные базы данных и ACID

Транзакции в реляционной базе данных имеют четыре важные характеристики: неразрывность (atomicity), целостность (consistency), изолированность (isolation) и неизменность (durability). Это сочетание получило название ACID.

  • Неразрывность определяет все элементы, которые необходимы для совершения транзакции в базе данных.
  • Согласованность или целостность определяет правила сохранения состояния данных после выполнения транзакции.
  • Изолированность гарантирует, что во избежание путаницы транзакция не повлияет на другие элементы до окончательного сохранения изменений.
  • Неизменность обеспечивает неизменность данных после сохранения изменений в результате транзакции.

Хранимые процедуры и реляционные базы данных

Доступ к данным включает в себя множество повторяющихся действий. Например, иногда для получения нужного результата простой запрос для получения информации из таблицы необходимо повторить сотню или тысячу раз. Для таких сценариев доступа к базе данных необходимо что-то вроде программного кода. Разработчикам каждый раз писать стандартный код доступа к данным для нового приложения было бы утомительно. К счастью, реляционные базы данных поддерживают хранимые процедуры, представляющие собой блоки кода, к которым можно получить доступ с помощью обычного вызова со стороны кода приложения. Например, одну и ту же хранимую процедуру можно использовать для последовательной маркировки записей в целях удобства пользователей для различных приложений. Хранимые процедуры также помогают разработчикам убедиться в правильной реализации определенных функций данных в приложении.

Блокировки базы данных и параллельный доступ

Когда несколько пользователей или приложений пытаются одновременно изменить одни и те же данные, это может вести к возникновению конфликта в базе. Блокировки и параллельный доступ снижают вероятность конфликтов и способствуют сохранению целостности данных.

Блокировка не разрешает другим пользователям и приложениям получать доступ к данным во время их обновления. В некоторых базах данных блокировка может применяться к целой таблице, что негативно отражается на эффективности приложения. В других типах баз данных, например реляционных базах Oracle, блокировка выполняется на уровне одной записи, оставляя другие записи в таблице доступными. Такой подход помогает сохранить эффективность приложения.

Инструмент параллельного доступа используется, когда несколько пользователей или приложений пытаются одновременно выполнить запросы к одной базе данных. Он обеспечивает доступ пользователей и приложений к базе данных в соответствии с политиками контроля.

Характеристики, на которые следует обратить внимание при выборе реляционной базы данных

Программное обеспечение, которое используется для сохранения, контроля и извлечения данных в базе, а также выполнения к ней запросов, называют системой управления реляционной базой данных (СУРБД). СУРБД обеспечивает интерфейс между пользователями и приложениями и базой данных, а также административные функции для управления хранением данных, их эффективностью и доступом к ним.

При выборе типа базы данных и продуктов на основе реляционных баз данных необходимо учитывать несколько факторов. Выбор СУРБД зависит от потребностей Вашей компании. Задайте себе следующие вопросы.

  • Каковы наши требования к точности данных? Будем ли мы использовать бизнес-логику для хранения и обеспечения точности данных? Предъявляются ли к нашим данным более строгие требования в отношении точности (например, если Вы работаете с финансовыми данными и отчетностью)?
  • Нужна ли нам масштабируемость? Какими объемами данных требуется управлять и каков прогнозируемый рост этих объемов? Должна ли модель базы данных поддерживать зеркальные копии (как отдельные экземпляры) в целях масштабирования? Если да, сможем ли мы обеспечивать целостность данных в этих экземплярах?
  • Насколько важно наличие параллельного доступа? Потребуется ли пользователям и приложениям одновременный доступ к данным? Поддерживает ли ПО базы данных параллельный доступ без ущерба для безопасности?
  • Каковы наши потребности в эффективности и надежности баз данных? Требуется ли нам высокоэффективная и надежная система? Каковы требования к скорости выполнения запросов? Какие гарантии дает вендор услуг в соответствии с соглашением об обслуживании (SLA) или на случай незапланированного простоя?

Реляционная база данных будущего: автономная база данных

На протяжении последних лет реляционные базы данных улучшали свою производительность, надежность и безопасность и становились проще в обслуживании. Однако их структура становилась все более сложной, и, как следствие, администрирование такой базы данных начало требовать немалых усилий. Вместо того, чтобы использовать свои навыки для разработки инновационных приложений, которые будут приносить прибыль компании, разработчики вынуждены посвящать львиную долю времени управлению базой данных для оптимизации ее эффективности.

Мы использовали автономные технологии, чтобы расширить возможности реляционной модели и создать реляционную базу данных нового типа. Самоуправляемая база данных (которую также называют автономной) сохраняет все преимущества и возможности реляционной модели и добавляет к ним средства на основе искусственного интеллекта, машинного обучения и автоматизации для мониторинга и оптимизации скорости выполнения запросов и управления. Например, чтобы улучшить скорость выполнения запросов, самоуправляемая база данных строит прогнозы и проверяет индексы, а затем применяет лучшие результаты на практике — и все это без участия администратора. Самоуправляемые базы данных постоянно вносят такие улучшения в собственную работу без человеческого вмешательства.

Читайте также:  Погружение свай вибрационным способом

Автономные технологии дают возможность разработчикам больше не тратить время на рутинные задачи обслуживания. Например, больше не нужно заблаговременно определять требования к инфраструктуре. При использовании решения IaaS Вы арендуете ресурсы, например вычислительные мощности или хранилище, получаете доступ к нужным ресурсам по мере необходимости и платите только за те из них, которые использует Ваша компания. Разработчики могут создавать автономные реляционные базы данных всего за несколько шагов, ускоряя процесс разработки приложений.

Источник

Руководство по проектированию реляционных баз данных (1-3 часть из 15) [перевод]

Перевод цикла из 15 статей о проектировании баз данных.
Информация предназначена для новичков.
Помогло мне. Возможно, что поможет еще кому-то восполнить пробелы.

Руководство по проектированию баз данных.

1. Вступление.

Если вы собираетесь создавать собственные базы данных, то неплохо было бы придерживаться правил проектирования баз данных, так как это обеспечит долговременную целостность и простоту обслуживания ваших данных. Данное руководство расскажет вам что представляют из себя базы данных и как спроектировать базу данных, которая подчиняется правилам проектирования реляционных баз данных.

Базы данных – это программы, которые позволяют сохранять и получать большие объемы связанной информации. Базы данных состоят из таблиц, которые содержат информацию. Когда вы создаете базу данных необходимо подумать о том, какие таблицы вам нужно создать и какие связи существуют между информацией в таблицах. Иначе говоря, вам нужно подумать о проекте вашей базы данных. Хороший проект базы данных, как было сказано ранее, обеспечит целостность данных и простоту их обслуживания.

Структурированный язык запросов (SQL).

База данных создается для хранения в ней информации и получения этой информации при необходимости. Это значит, что мы должны иметь возможность помещать, вставлять (INSERT) информацию в базу данных и мы хотим иметь возможность делать выборку информации из базы данных (SELECT).
Язык запросов к базам данных был придуман для этих целей и был назван Структурированный язык запросов или SQL. Операции вставки данных (INSERT) и их выборки (SELECT) – части этого самого языка. Ниже приведен пример запроса на выборку данных и его результат.

SQL – большая тема для повествования и его рассмотрение выходит за рамки данного руководства. Данная статья строго сфокусирована на изложении процесса проектирования баз данных. Позднее, в отдельном руководстве, я расскажу об основах SQL.

Реляционная модель.

В этом руководстве я покажу вам как создавать реляционную модель данных. Реляционная модель – это модель, которая описывает как организовать данные в таблицах и как определить связи между этими таблицами.

Правила реляционной модели диктуют, как информация должна быть организована в таблицах и как таблицы связаны друг с другом. В конечном счете результат можно предоставить в виде диаграммы базы данных или, если точнее, диаграммы «сущность-связь», как на рисунке (Пример взят из MySQL Workbench).

Примеры.

В качестве примеров в руководстве я использовал ряд приложений.

РСУБД, которую я использовал для создания таблиц примеров – MySQL. MySQL – наиболее популярная РСУБД и она бесплатна.

Утилита для администрирования БД.

После установки MySQL вы получаете только интерфейс командной строки для взаимодействия с MySQL. Лично я предпочитаю графический интерфейс для управления моими базами данных. Я часто использую SQLyog. Это бесплатная утилита с графическим интерфейсом. Изображения таблиц в данном руководстве взяты оттуда.

Существует отличное бесплатное приложение MySQL Workbench. Оно позволяет спроектировать вашу базу данных графически. Изображения диаграмм в руководстве сделаны в этой программе.

Проектирование независимо от РСУБД.

Важно знать, что хотя в данном руководстве и приведены примеры для MySQL, проектирование баз данных независимо от РСУБД. Это значит, что информация применима к реляционным базам данных в общем, не только к MySQL. Вы можете применить знания из этого руководства к любым реляционным базам данных, подобным Mysql, Postgresql, Microsoft Access, Microsoft Sql or Oracle.

В следующей части я коротко расскажу об эволюции баз данных. Вы узнаете откуда взялись базы данных и реляционная модель данных.

2. История.

В 70-х – 80-х годах, когда компьютерные ученые все еще носили коричневые смокинги и очки с большими, квадратными оправами, данные хранились бесструктурно в файлах, которые представляли собой текстовый документ с данными, разделенными (обычно) запятыми или табуляциями.

Так выглядели профессионалы в сфере информационных технологий в 70-е. (Слева внизу находится Билл Гейтс).

Текстовые файлы и сегодня все еще используются для хранения малых объемов простой информации. Comma-Separated Values (CSV) — значения, разделённые запятыми, очень популярны и широко поддерживаются сегодня различным программным обеспечением и операционными системами. Microsoft Excel – один из примеров программ, которые могут работать с CSV–файлами. Данные, сохраненные в таком файле могут быть считаны компьютерной программой.

Выше приведен пример того, как такой файл мог бы выглядеть. Программа, производящая чтение данного файла, должна быть уведомлена о том, что данные разделены запятыми. Если программа хочет выбрать и вывести категорию, в которой находится урок ‘Database Design Tutorial’, то она должна строчка за строчкой производить чтение до тех пор, пока не будут найдены слова ‘Database Design Tutorial’ и затем ей нужно будет прочитать следующее за запятой слово для того, чтобы вывести категорию Software.

Таблицы баз данных.

Чтение файла строчка за строчкой не является очень эффективным. В реляционной базе данных данные хранятся в таблицах. Таблица ниже содержит те же самые данные, что и файл. Каждая строка или “запись” содержит один урок. Каждый столбец содержит какое-то свойство урока. В данном случае это заголовок (title) и его категория (category).

Компьютерная программа могла бы осуществить поиск в столбце tutorial_id данной таблицы по специфическому идентификатору tutorial_id для того, чтобы быстро найти соответствующие ему заголовок и категорию. Это намного быстрее, чем поиск по файлу строка за строкой, подобно тому, как это делает программа в текстовом файле.

Читайте также:  Дети наше будущее способ образования

Современные реляционные базы данных созданы так, чтобы позволять делать выборку данных из специфических строк, столбцов и множественных таблиц, за раз, очень быстро.

История реляционной модели.

Реляционная модель баз данных была изобретена в 70-х Эдгаром Коддом (Ted Codd), британским ученым. Он хотел преодолеть недостатки сетевой модели баз данных и иерархической модели. И он очень в этом преуспел. Реляционная модель баз данных сегодня всеобще принята и считается мощной моделью для эффективной организации данных.

Сегодня доступен широкий выбор систем управления базами данных: от небольших десктопных приложений до многофункциональных серверных систем с высокооптимизированными методами поиска. Вот некоторые из наиболее известных систем управления реляционными базами данных (РСУБД):

Oracle – используется преимущественно для профессиональных, больших приложений.
Microsoft SQL server – РСУБД компании Microsoft. Доступна только для операционной системы Windows.
Mysql – очень популярная РСУБД с открытым исходным кодом. Широко используется как профессионалами, так и новичками. Что еще нужно?! Она бесплатна.
IBM – имеет ряд РСУБД, наиболее известна DB2.
Microsoft Access – РСУБД, которая используется в офисе и дома. На самом деле – это больше, чем просто база данных. MS Access позволяет создавать базы данных с пользовательским интерфейсом.
В следующей части я расскажу кое-что о характеристиках реляционных баз данных.

3. Характеристики реляционных баз данных.

Реляционные базы данных разработаны для быстрого сохранения и получения больших объемов информации. Ниже приведены некоторые характеристики реляционных баз данных и реляционной модели данных.

Использование ключей.

Каждая строка данных в таблице идентифицируется уникальным “ключом”, который называется первичным ключом. Зачастую, первичный ключ это автоматически увеличиваемое (автоинкрементное) число (1,2,3,4 и т.д). Данные в различных таблицах могут быть связаны вместе при использовании ключей. Значения первичного ключа одной таблицы могут быть добавлены в строки (записи) другой таблицы, тем самым, связывая эти записи вместе.

Используя структурированный язык запросов (SQL), данные из разных таблиц, которые связаны ключом, могут быть выбраны за один раз. Для примера вы можете создать запрос, который выберет все заказы из таблицы заказов (orders), которые принадлежат пользователю с идентификатором (id) 3 (Mike) из таблицы пользователей (users). О ключах мы поговорим далее, в следующих частях.


Столбец id в данной таблице является первичным ключом. Каждая запись имеет уникальный первичный ключ, часто число. Столбец usergroup (группы пользователей) является внешним ключом. Судя по ее названию, она видимо ссылается на таблицу, которая содержит группы пользователей.

Отсутствие избыточности данных.

В проекте базы данных, которая создана с учетом правил реляционной модели данных, каждый кусочек информации, например, имя пользователя, хранится только в одном месте. Это позволяет устранить необходимость работы с данными в нескольких местах. Дублирование данных называется избыточностью данных и этого следует избегать в хорошем проекте базы данных.

Ограничение ввода.

Используя реляционную базу данных вы можете определить какой вид данных позволено сохранять в столбце. Вы можете создать поле, которое содержит целые числа, десятичные числа, небольшие фрагменты текста, большие фрагменты текста, даты и т.д.


Когда вы создаете таблицу базы данных вы предоставляете тип данных для каждого столбца. К примеру, varchar – это тип данных для небольших фрагментов текста с максимальным количеством знаков, равным 255, а int – это числа.

Помимо типов данных РСУБД позволяет вам еще больше ограничить возможные для ввода данные. Например, ограничить длину или принудительно указать на уникальность значения записей в данном столбце. Последнее ограничение часто используется для полей, которые содержат регистрационные имена пользователей (логины), или адреса электронной почты.

Эти ограничения дают вам контроль над целостностью ваших данных и предотвращают ситуации, подобные следующим:

— ввод адреса (текста) в поле, в котором вы ожидаете увидеть число
— ввод индекса региона с длинной этого самого индекса в сотню символов
— создание пользователей с одним и тем же именем
— создание пользователей с одним и тем же адресом электронной почты
— ввод веса (числа) в поле дня рождения (дата)

Поддержание целостности данных.

Настраивая свойства полей, связывая таблицы между собой и настраивая ограничения, вы можете увеличить надежность ваших данных.

Назначение прав.

Большинство РСУБД предлагают настройку прав доступа, которая позволяет назначать определенные права определенным пользователям. Некоторые действия, которые могут быть позволены или запрещены пользователю: SELECT (выборка), INSERT (вставка), DELETE (удаление), ALTER (изменение), CREATE (создание) и т.д. Это операции, которые могут быть выполнены с помощью структурированного языка запросов (SQL).

Структурированный язык запросов (SQL).

Для того, чтобы выполнять определенные операции над базой данных, такие, как сохранение данных, их выборка, изменение, используется структурированный язык запросов (SQL). SQL относительно легок для понимания и позволяет в т.ч. и уложненные выборки, например, выборка связанных данных из нескольких таблиц с помощью оператора SQL JOIN. Как и упоминалось ранее, SQL в данном руководстве обсуждаться не будет. Я сосредоточусь на проектировании баз данных.

То, как вы спроектируете базу данных будет оказывать непосредственное влияние на запросы, которые вам будет необходимо выполнить, чтобы получить данные из базы данных. Это еще одна причина, почему вам необходимо задуматься о том, какой должна быть ваша база. С хорошо спроектированной базой данных ваши запросы могут быть чище и проще.

Переносимость.

Реляционная модель данных стандартна. Следуя правилам реляционной модели данных вы можете быть уверены, что ваши данные могут быть перенесены в другую РСУБД относительно просто.

Как говорилось ранее, проектирование базы данных – это вопрос идентификации данных, их связи и помещение результатов решения данного вопроса на бумагу (или в компьютерную программу). Проектирование базы данных независимо от РСУБД, которую вы собираетесь использовать для ее создания.

В следующей части подробнее рассмотрим первичные ключи.

Источник

Оцените статью
Разные способы