math4school.ru
Арифметическая и геометрическая прогрессии
Числовые последовательности (основные понятия)
Если каждому натуральному числу n поставить в соответствие действительное число an , то говорят, что задано числовую последовательность :
Итак, числовая последовательность — функция натурального аргумента.
Число a1 называют первым членом последовательности , число a2 — вторым членом последовательности , число a3 — третьим и так далее. Число an называют n-м членом последовательности , а натуральное число n — его номером .
Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.
Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.
последовательность положительных нечётных чисел можно задать формулой
а последовательность чередующихся 1 и –1 — формулой
Последовательность можно определить рекуррентной формулой, то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.
если a1 = 1 , а an+1 = an + 5 , то первые пять членов последовательности находим следующим образом:
Последовательности могут быть конечными и бесконечными .
Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.
последовательность двузначных натуральных чисел:
10, 11, 12, 13, . . . , 98, 99
Последовательность простых чисел:
Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.
Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.
2, 4, 6, 8, . . . , 2n, . . . — возрастающая последовательность;
Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .
Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.
Арифметическая прогрессия
Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.
является арифметической прогрессией, если для любого натурального числа n выполняется условие:
где d — некоторое число.
Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:
Число d называют разностью арифметической прогрессии .
Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.
если a1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:
Для арифметической прогрессии с первым членом a1 и разностью d её n -й член может быть найден по формуле:
найдём тридцатый член арифметической прогрессии
an = | an–1 + an+1 |
2 |
каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.
Так как верно и обратное утверждение, то имеет место следующее утверждение:
числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.
докажем, что последовательность, которая задаётся формулой an = 2n – 7 , является арифметической прогрессией.
Воспользуемся приведённым выше утверждением. Имеем:
an+1 + an–1 | = | 2n – 5 + 2n – 9 | = 2n – 7 = an, |
2 | 2 |
что и доказывает нужное утверждение. ◄
Отметим, что n -й член арифметической прогрессии можно найти не толь через a1 , но и любой предыдущий ak , для чего достаточно воспользоваться формулой
an = | a n–k + a n+k |
2 |
любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.
Кроме того, для любой арифметической прогрессии справедливо равенство:
в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .
первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:
Sn = | a1 + an | · n . |
2 |
Отсюда, в частности, следует, что если нужно просуммировать члены
то предыдущая формула сохраняет свою структуру:
Sn – Sk–1 = ak + ak+1 + . . . + an = | ak + an | · (n – k + 1) . |
2 |
в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .
Если дана арифметическая прогрессия, то величины a1, an, d, n и S n связаны двумя формулами:
an = a1 + (n – 1)d и Sn = | a1 + an | · n . |
2 |
Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.
Арифметическая прогрессия является монотонной последовательностью. При этом:
- если d > 0 , то она является возрастающей;
- если d , то она является убывающей;
- если d = 0 , то последовательность будет стационарной.
Геометрическая прогрессия
Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.
является геометрической прогрессией, если для любого натурального числа n выполняется условие:
где q ≠ 0 — некоторое число.
Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:
Число q называют знаменателем геометрической прогрессии .
Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.
если b1 = 1, q = –3 , то первые пять членов последовательности находим следующим образом:
Для геометрической прогрессии с первым членом b1 и знаменателем q её n -й член может быть найден по формуле:
найдём седьмой член геометрической прогрессии 1, 2, 4, . . .
каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.
Так как верно и обратное утверждение, то имеет место следующее утверждение:
числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.
докажем, что последовательность, которая задаётся формулой bn = –3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:
что и доказывает нужное утверждение. ◄
Отметим, что n -й член геометрической прогрессии можно найти не только через b1 , но и любой предыдущий член bk , для чего достаточно воспользоваться формулой
квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.
Кроме того, для любой геометрической прогрессии справедливо равенство:
в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .
первых n членов геометрической прогрессии со знаменателем q ≠ 0 вычисляется по формуле:
Sn = b1 · | 1 – q n | . |
1 – q |
А при q = 1 — по формуле
Заметим, что если нужно просуммировать члены
то используется формула:
Sn – Sk–1 = bk + bk+1 + . . . + bn = bk · | 1 – q n – k +1 | . |
1 – q |
в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .
S10 = 1 + 2 + . . . + 512 = 1 · (1 – 2 10 ) / (1 – 2) = 1023;
Если дана геометрическая прогрессия, то величины b1, bn, q, n и Sn связаны двумя формулами:
bn = b1 · q n –1 и Sn = b1 · | 1 – q n | . |
1 – q |
Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.
Для геометрической прогрессии с первым членом b1 и знаменателем q имеют место следующие свойства монотонности :
- прогрессия является возрастающей, если выполнено одно из следующих условий:
- прогрессия является убывающей, если выполнено одно из следующих условий:
Если q , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.
Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:
Бесконечно убывающая геометрическая прогрессия
Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть
Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю
При таком знаменателе последовательность знакопеременная. Например,
Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой
S = b1 + b2 + b3 + . . . = | b1 | . |
1 – q |
10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 – 0,1) = 11 1 /9 ,
10 – 1 + 0,1 – 0,01 + . . . = 10 / (1 + 0,1) = 9 1 /11 . ◄
Связь арифметической и геометрической прогрессий
Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.
1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и
7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 . ◄
2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и
lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 . ◄
Источник