Реферат графический способ решения уравнений

Графический метод решения уравнений

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставила цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Моя исследовательская работа поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода. В современной жизни изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Для решения таких уравнений графический метод является весьма эффективным, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра α. Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях. В моей работе рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на едином государственном экзамене ЕГЭ.

Скачать:

Вложение Размер
graficheskiy_metod_resheniya_uravneniy_s_parametrom.pptx 961.23 КБ
graficheskiy_metod_resheniya_uravneniy.docx 2.75 МБ
Предварительный просмотр:

Подписи к слайдам:

Графический метод решения уравнений с параметром Автор: Назарова Алёна у ченица 11 класса « Тарбагатайской СОШ» Руководитель: Покацкая Анна Фёдоровна учитель математики

Цель работы : выявить наиболее рациональное решение, быстро приводящее к ответу. Задача: — рассмотреть теорию методов решения задач с параметрами; — разобрать поэтапно способы решения задач с параметрами на примерах; — сделать выводы по изученному материалу. Объект исследования : Уравнения с параметрами. Методы исследования: Эмпирический: формирование проблемы, гипотезы, задач, составление плана работы, оформление результатов исследовательской работы. Теоретический: анализ литературных и архивных данных, работа в Интернете

История возникновения Задачи на уравнения с параметром встречались уже в астрономическом трактате « Ариабхатиам », составленном в 499 году. Индийский учёный изложил общее правило решения квадратных уравнений, приведённых к канонической системе.

Автор насчитывает 6 видов уравнений, выражая их следующим образом: 1) «Квадраты равны корням», т. е. αx 2 = bx . 2) «Квадраты равны числу», т. е. αx 2 = c. 3) «Корни равны числу», т. е. αx = c. 4) «Квадраты и числа равны корням», т. е. αx 2 + c = bx . 5) «Квадраты и корни равны числу», т. е. αx 2 + bx = c. 6) «Корни и числа равны квадратам», т. е. bx + c = αx 2 .

Теорема Виетта (α + b ) x – x 2 = α b , Т. е. x 2 — (α – b ) x + α b =0, то x 1 = α, x 2 = b . Теорема Виетта — теорема, выражает связь между параметрами, коэффициентами квадратного уравнения и его корнями . Таким образом, Виета установил единообразие в приёмах решения уравнений.

Основные понятия Параметр — независимая переменная, значение которой считается фиксированным или произвольным числом, или числом, принадлежащим заданному условием задачи промежутку. Уравнение с параметром — математическое уравнение, внешний вид и решение которого зависит от значений одного или нескольких параметров. Системой допустимых значений переменных a ,с, k , х называется любая система значений переменных, при которой и левая и правая части этого уравнения принимают действительные значения. Равносильными уравнениями , называются два уравнения содержащие одни и те же параметры.

Методы решения уравнений с параметрами 1. Аналитический метод 2. Графический метод 3. Алгебраический метод 4. Метод симметрии 5. Решение с помощью производной

Небольшая история возникновения этого метода. Исследование общих зависимостей началось еще в 14 веке. Французский учёный Николай Орем стал изображать интенсивность длинами отрезков. Когда он располагал эти отрезки перпендикулярно некоторой прямой, их концы образовывали линию, названную им « линией интенсивности» Понятие переменный величины, ввёл французский философ и математик Рене Декарт. Также он ввёл фиксированный единичный отрезок и стал рассматривать отношение других отрезков к нему. Таким образом, графики функций за всё время прошли через фундаментальные преобразования., приведших их к тому виду, как мы привыкли.

Графический метод График функции- множество точек, у которых с абсциссы являются допустимыми значениями аргумента х , а ординаты- соответствующими значениями функции у. При графическом решении уравнения с параметром необходимо: 1.Найти область определения уравнения, т.е. область допустимых значений неизвестного и параметра, при которых уравнение может иметь решения. 2.Выразить параметр как функцию от x: 3.В системе координат хОa построить графики функций и для тех значений х , которые входят в область определения уравнения. 4.Определить точки пересечения прямой с графиком функции .

Виды уравнений с параметрами Линейное ( ax=b) Квадратное (ax^2+bx+c=0) Логарифмическое Тригонометрическое

Решение логарифмического уравнения с параматером

Заключение Таким образом, графический способ определения числа корней уравнения зависимости от входящего в него параметра, является более удобным, чем аналитический. И в заключении хотелось бы сказать, что работа над данной темой была интересной и познавательной. Изучив метод решения уравнений с параметром, я обогатила свой опыт: -Новыми понятиями -Узнала методы, которые выходят из рамки школьной программы. -Углубила и расширила свои знания. Изучив данную тему, можем сделать вывод. Параметр- это буква, которая никому ничем не обязана и может принимать любые допустимые значения .

Источник

Реферат: Графическое решение уравнений

Графическое решение уравнений

Необходимость решать квадратные уравнения еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения вавилоняне умели решать еще около 2000 лет до н.э. Правило решения этих уравнений, изложенное в Вавилонских текстах, совпадает по существу с современными, однако неизвестно, каким образом дошли вавилоняне до этого правила.

Формулы решения квадратных уравнений в Европе были впервые изложены в «Книге абака», написанной в 1202 году итальянским математиком Леонардо Фибоначчи. Его книга способствовала распространению алгебраических знаний не только в Италии, но и Германии, Франции и других странах Европы.

Но общее правило решения квадратных уравнений, при всевозможных комбинациях коэффициентов b и c было сформулировано в Европе лишь в 1544 году М. Штифелем.

В 1591 году Франсуа Виет ввел формулы для решения квадратных уравнений.

В древнем Вавилоне могли решить некоторые виды квадратных уравнений.

Диофант Александрийский и Евклид, Аль-Хорезми и Омар Хайям решали уравнения геометрическими и графическими способами.

В 7 классе мы изучали функции у = С, у = kx, у = kx+m, у = x2,у = – x2, в 8 классе – у = √x, у =|x|, у = ax2+bx+c, у = k/x. В учебнике алгебры 9 класса я увидела ещё не известные мне функции: у = x3, у = x4,у = x2n, у = x2n, у = 3√x, (x a)2 + (у – b)2 = r2 и другие. Существуют правила построения графиков данных функций. Мне стало интересно, есть ли ещё функции, подчиняющиеся этим правилам.

Моя работа заключается в исследовании графиков функций и графическом решении уравнений.

1. Какие бывают функции

График функции – это множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов, а ординаты – соответствующим значениям функции.

Линейная функция задаётся уравнением у = kx+ b, гдеk и b – некоторые числа. Графиком этой функции является прямая.

Функция обратной пропорциональности у = k/x, где k ¹ 0. График этой функции называется гиперболой.

Функция (x a)2+ (у – b)2= r2, где а, b и r – некоторые числа. Графиком этой функции является окружность радиуса r с центром в т. А (а, b).

Квадратичная функция y= ax2+ bx+ c где а, b, с – некоторые числа и а ¹ 0. Графиком этой функции является парабола.

Уравнение. График этого уравнения называется астроидой.

Функции: у = x3 – кубическая парабола, у = x4, у = 1/x2.

2. Понятие уравнения, его графического решения

Уравнение – выражение, содержащее переменную.

Решить уравнение – это значит найти все его корни, или доказать, что их нет.

Корень уравнения – это число, при подстановке которого в уравнение получается верное числовое равенство.

Решение уравнений графическим способомпозволяет найти точное или приближенное значение корней, позволяет найти количество корней уравнения.

При построении графиков и решении уравнений используются свойства функции, поэтому метод чаще называют функционально-графическим.

Для решения уравнение «делим» на две части, вводим две функции, строим их графики, находим координаты точек пересечения графиков. Абсциссы этих точек и есть корни уравнения.

3. Алгоритм построения графика функции

Зная график функции у = f(x), можно построить графики функций у = f(x+m),у = f(x)+l и у = f(x+ m)+ l. Все эти графики получаются из графика функции у = f(x) с помощью преобразования параллельного переноса: на m единиц масштаба вправо или влево вдоль оси x и на l единиц масштаба вверх или вниз вдоль оси y.

4. Графическое решение квадратного уравнения

На примере квадратичной функции мы рассмотрим графическое решение квадратного уравнения. Графиком квадратичной функции является парабола.

Что знали о параболе древние греки?

Современная математическая символика возникла в 16 веке.

У древнегреческих же математиков ни координатного метода, ни понятия функции не было. Тем не менее, свойства параболы были изучены ими подробно. Изобретательность античных математиков просто поражает воображение, – ведь они могли использовать только чертежи и словесные описания зависимостей.

Наиболее полно исследовал параболу, гиперболу и эллипс Аполоний Пергский, живший в 3 веке до н.э. Он же дал этим кривым названия и указал, каким условиям удовлетворяют точки, лежащие на той или иной кривой (ведь формул-то не было!).

Существует алгоритм построения параболы:

Находим координаты вершины параболы А (х0; у0): х=-b/2a;

Находим ось симметрии параболы (прямая х=х0);

Составляем таблицу значений для построения контрольных точек;

Строим полученные точки и построим точки им симметричные относительно оси симметрии.

1. По алгоритму построим параболу y= x2– 2x– 3. Абсциссы точек пересечения с осью xи есть корни квадратного уравнения x2– 2x– 3 = 0.

Существует пять способов графического решения этого уравнения.

2. Разобьём уравнение на две функции: y=x2и y= 2x+ 3. Корни уравнения – абсциссы точек пересечения параболы с прямой.

3. Разобьём уравнение на две функции: y=x2–3 и y=2x. Корни уравнения – абсциссы точек пересечения параболы с прямой.

4. Преобразуем уравнениеx2– 2x– 3 = 0 при помощи выделения полного квадрата на функции: y= (x–1)2иy=4. Корни уравнения – абсциссы точек пересечения параболы с прямой.

5. Разделим почленно обе части уравненияx2– 2x– 3 = 0 на x, получим x– 2 – 3/x= 0, разобьём данное уравнение на две функции: y= x– 2, y= 3/x. Корни уравнения – абсциссы точек пересечения прямой и гиперболы.

5. Графическое решение уравнений степени n

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y= x5, y= 3 – 2x.

Корнями данного уравнения является абсцисса точки пересечения графиков двух функций: y= 3x, y= 10 – x.

На примере решения квадратного уравнения можно сделать выводы, что графический способ применим и для уравнений степени n.

Графические способы решения уравнений красивы и понятны, но не дают стопроцентной гарантии решения любого уравнения. Абсциссы точек пересечения графиков могут быть приближёнными.

В 9 классе и в старших классах я буду ещё знакомиться с другими функциями. Мне интересно знать: подчиняются ли те функции правилам параллельного переноса при построении их графиков.

На следующий год мне хочется также рассмотреть вопросы графического решения систем уравнений и неравенств.

1. Алгебра. 7 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

2. Алгебра. 8 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

3. Алгебра. 9 класс. Ч. 1. Учебник для общеобразовательных учреждений/ А.Г. Мордкович. М.: Мнемозина, 2007.

4. Глейзер Г.И. История математики в школе. VII–VIII классы. – М.: Просвещение, 1982.

5. Журнал Математика №5 2009; №8 2007; №23 2008.

Источник

Реферат: Алгебраическое и графическое решение уравнений, содержащих модули

Цель работы: хотя уравнения с модулями ученики начинают изучать уже с 6-го – 7-го класса, где они проходят самые азы уравнений с модулями. Я выбрал именно эту тему, потому что считаю, что она требует более глубокого и досканального исследования. Я хочу получить более широкие знания о модуле числа, различных способах решения уравнений, содержащих знак абсолютной величины.

Слово «модуль» произошло от латинского слова «modulus», что в переводе означает «мера». Это многозначное слово(омоним), которое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, програмировании и других точных науках.

В архитектуре-это исходная еденица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

В технике-это термин, применяемый в различных облостях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например модуль зацепления, модуль упругости и .т.п.

Модуль объемного сжатия( в физике)-отношение нормального напряжения в материале к относительному удлинению.

2. Понятия и определения

Чтобы глубоко изучать данную тему, необходимо познакомиться с простейшими определениями, которые мне будут необходимы:

Уравнение-это равенство, сродержащее переменные.

Уравнение с модулем-это уравнение, содержащие переменную под знаком абсолютной величины(под знаком модуля).Например: |x|=1

Решить уравнение-это значит найти все его корни, или доказать, что корней нет.

В математике модуль имеет несколько значений, но в моей исследовательской работе я возьму лишь одно:

Модуль-абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой.

Определение. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля:

Из определения следует, что для любого действительного числа a,

Теорема 1. Абсолютная величина действительного числа равна большему из двух чисел a или -a.

1. Если число a положительно, то -a отрицательно, т. е. -a 0 уравнение имеет 2 различных корня.

Как показывает решение, корнями данного уравнения также являются числа 11/3 и 6

Ответ: x1=6, x2=11/3

Пример 5. Решим уравнение (2x + 3)2=(x – 1)2.

Учитывая соотношение (2), получим, что |2x + 3|=|x – 1|, откуда по образцу предыдущего примера(и по соотношению (1)):

2х + 3=х – 1 или 2х + 3=-х + 1

2х – х=-1 – 3 2х+ х=1 – 3

Таким образом корнями уравнения являются х1=-4, и х2=-0,(6)

Пример 6. Решим уравнение |x – 6|=|x2 – 5x + 9|

Пользуясь соотношением (1), получим:

х – 6=х2 – 5х + 9 или х – 6 = -(х2 – 5х + 9)

-х2 + 5х + х – 6 – 9=0 |(-1) x – 6=-x2 + 5x — 9

x2 — 6x + 15=0 x2 – 4x + 3=0

D=36 – 4  15=36 – 60= -24 02 р.к.

Проверка: |1 – 6|=|12 – 5  1 + 9| |3 – 6|=|32 – 5  3 + 9|

5 = 5(И) 3 = |9 – 15 + 9|

4.2.Использование геометрической интерпритации модуля для решения уравнений.

Геометрический смысл модуля разности величин-это расстояние между ними. Например, геометрический смысл выражения |x – a | -длина отрезка координатной оси, соединяющей точки с абсцисами а и х . Перевод алгеб-раической задачи на геометрический язык часто позволяет избежать громоздких решений.

Пример7. Решим уравнение |x – 1| + |x – 2|=1 с использованием геометрической интерпритации модуля.

Будем рассуждать следующим образом: исходя из геометрической интерпри-тации модуля, левая часть уравнения представляет собой сумму расстояний от некторой точки абсцисс х до двух фиксированных точек с абсциссами 1 и 2. Тогда очевидно, что все точки с абсциссами из отрезка [1; 2] обладают требуемым свойством, а точки, расположенные вне этого отрезка- нет. Отсюда ответ: множеством решений уравнения является отрезок [1; 2].

Пример8. Решим уравнение |x – 1| — |x – 2|=1 1 с использованием геометрической интерпритации модуля.

Будем рассуждать аналогично предыдущему примеру, при этом получим, что разность расстояний до точек с абсциссами 1 и 2 равна единице только для точек, расположенных на координатной оси правее числа 2. Следовательно решением данного уравнения будет являтся не отрезок, заключенный между точками 1 и 2, а луч, выходящий из точки 2, и направленный в положительном направлении оси ОХ.

Обобщением вышеприведенных уравнений являются следующие равносильные переходы:

|x – a| + |x – b|=b – a, где b  a  a  x  b

|x – a| — |x – b|=b – a, где b  a  x  b

4.3. Графики простейших функций, содержащих знак абсолютной величины

Под простейшими функциями понимают алгебраическую сумму модулей линейных выражений. Сформулируем утверждение, позволяющее строить графики таких функций, не раскрывая модули ( что особенно важно, когда модулей достаточно много ): «Алгебраическая сумма модулей n линейных выражений представляет собой кусочно- линейную функцию, график которой состоит из n +1 прямолинейного отрезка. Тогда график может быть построен по n +2 точкам, n из которых представляют собой корни внутримодульных выражений, ещё одна — произвольная точка с абсциссой, меньшей меньшего из этих корней и последняя — с абсциссой, большей большего из корней.

1)f(x)=|x — 1| Вычисляя функции в точках 1, 0 и 2, получаем график, состоящий из двух отрезков(рис.1)

2) f(x)=|x — 1| + |x – 2| Вычисляя значение функиции в точках с абсциссами 1, 2, 0 и 3, получаем график, состоящий из двух отрезков прямых.(рис.2)

3) f(x)=|x — 1| + |x – 2| + |x – 3| Для построения графика вычислим значения функции в точках 1, 2, 3, 0 и 4 (рис.3)

4) f(x)=|x — 1| — |x – 2| График разности строится аналогично графику суммы, тоесть по точкам 1, 2, 0 и 3.

рис1. рис2. рис3. рис4.

4.4.Решение нестандартных уравнений, содержащих модули.

Пример9. Решить уравнение 3| x + 2 | + x2 + 6x + 2 = 0.

Рассмотрим два случая.

Пример10. Решить уравнение | 4 – x | + | (x – 1)(x – 3) | = 1.

Учитывая, что | 4 – x | = | x – 4 |, рассмотрим четыре случая.

так как

4)

4)

Построим графики функций y = |(x–1)(x–3)| и y=1–|x–4 |

1)в Гy = |(x–1)(x–3)| подставим значение х=1 и х=3. Мы получим у=0,

тоесть пересечение графика с осью ОХ. При х равном нулю у=3, тоесть график пересекается с осью ОУ в точке (0 ;3). И при х=4 у также равен 3- мы получили первый график.

2) y=1–|x–4 | Найдем пересечение с осью ОХ, для этого решим простое уравнение: 1-|x-4|=0

x — 4=1 или x — 4=-1

Следовательно данный график пересекает ось ОХ в точках 5 и 3.

При х=4 у=1 и ак видно из графика: графики обеих функций пересекаются в одной точке 3

Пример11. Решить уравнение | x2 + 3x | = 2(x + 1).

Уравнение равносильно системе

Ответ:

Пример12.Решить уравнение х2 — 4х +|x — 3| +3=0

Для освобождения от знака абсолютной величины разобьем числовую прямую на две области и будем искать решения исходного уравнения в каждой из этих областей отдельно:

__________x 3__________________|____________x 0два различ. корня

x=0 –посторонний корень, так как x1= (5- 1 )/2 =2

не удовлетворяет промежутку. x2=(5 + 1)/2=3

x=3 — посторонний корень, так как

не удовлетворяет промежутку.

Значит, исходное уравнение имеет два решения х1=2 и х2=3

Пример13. Решить уравнение | 2x + 8 | – | x – 5 | = 12.

Раскрытие пары модулей приводит к трем случаям (без x + 4  0, x – 5 0).

Пример 14. Решить уравнение .

Напишем равносильную смешанную систему:

Пример 15 Решить графически уравнение |1 – x| — |2x + 3| + x + 4=0

Представим уравнение в виде |1 – x| — |2x + 3| =-х – 4

Построим два графика у=|1 – x| — |2x + 3| и у=-х – 4

Критические точки: х=1, х=-1.5

(1 – х) ________+________|______ +____________|_____-______ >

а) х 0 и (2х + 3) 0 и (2x +3) 0, т.е функция примет вид

у=1 – х – 2х -3, у=-3х – 2 –графиком является прямая, проходящая через две точки (0; -2), (-1; 1).

в)При х1, (1 – х)0 и (2х + 3)>0, т.е. функция примет вид у= -1 + х – 2х – 3,

у= -х – 4 –графиком является прямая, проходящая через две точки (0; -4),

График функции у= — х – 4 совпадает с графиком у=|1 – x| — |2x + 3|, при х1,

Поэтому решением являются все х1 и х= -4

Построим числовую прямую так, чтобы по определению модуля знак абсолютной величины числа можно будет снять. Для этого найдем критические точки: 1- х=0 и 2х – 3 =0,

Источник

Читайте также:  Способы завязать волосы резинкой
Оцените статью
Разные способы
Название: Алгебраическое и графическое решение уравнений, содержащих модули
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:53:07 24 марта 2007 Похожие работы
Просмотров: 11201 Комментариев: 33 Оценило: 29 человек Средний балл: 4.6 Оценка: 5 Скачать