Реакция для получения альдегида по способу кучерова

РЕАКЦИЯ КУЧЕРОВА

Реакция Кучерова для ацетилена (1881 г) стала основой промышленного получения уксусного альдегида как исходного сырья в синтезе многих органических соединений.

Кучеров Михаил Григорьевич (1850 – 1911) – российский химик-органик, внесший значительный вклад в развитие органического синтеза.

Взаимодействие ацетилена с водой (гидратация) приводит к образованию уксусного альдегида (ацетальдегида):

Обязательным условием протекания реакции является присутствие в качестве катализатора раствора (5%) соли ртути (II) в сернокислой (10%) среде. Катализаторами могут быть также соли Au + , Cu + , Ag + и Ru 3+ . Однако доказана лучшая эффективность солей Hg 2+ (чаще HgSO4).

Механизм реакции Кучерова для ацетилена

Несмотря на кажущуюся простоту процесса, механизм его до сих пор не совсем ясен.

Однако достоверно известно, что одной из промежуточных стадий является образование неустойчивых непредельных спиртов (енолей). Их молекулы содержат гидроксильную группу –ОН у атома углерода с двойной связью.

Например, реакция Кучерова для ацетилена проходит следующим образом:

Механизм реакции Кучерова для гомологов ацетилена

При гидратации гомологов ацетилена образуются не альдегиды, а кетоны . Причем присоединение воды происходит по правилу Марковникова:

Алкины ряда R ̶ C≡CH при гидратации всегда образуют метилкетоны: R ̶ C(O) ̶ CH3. Реакция получения ацетона (диметилкетона) как раз является таким примером.

Алкины ряда R1 ̶ C≡C ̶ R2 при гидратации в зависимости от строения R1 и R2 могут давать смесь кетонов с явным преобладанием одного из них:

Как определить, какой кетон будет преобладать?

Молекула 4-метилпентина-2 содержит третичный атом углерода. Ближний к нему атом углерода с тройной связью находится в α-положении к нему, следующий – в β-положении. Образование карбонильной группы, характерной для кетонов, происходит в основном у углерода в α-положении.

Читайте также:  Способ решения познавательных задач называется

Еще пример:

Итак, реакция Кучерова для ацетилена приводит к образованию ацетальдегида; реакция Кучерова для гомологов ацетилена приводит к образованию кетонов.

Источник

Реакция для получения альдегида по способу кучерова

Реакция Кучерова (гидратация алкинов) – гидратация ацетилена с образованием ацетальдегида и гомологов ацетилена с образованием кетонов в присутствии солей ртути в качестве катализатора.

Реакция гидратации ацетилена (присоединение воды) была открыта в 1881 г. русским ученым М.Г. Кучеровым, который пытался получить непредельный спирт (виниловый), а затем его полимеризовать. Вместо ожидаемого спирта Кучеров выделил легкокипящую жидкость с характерным запахом – уксусный альдегид.

Реакция идет в присутствии солей ртути (обычно HgSO4) в серной кислоте и идет через образование неустойчивого непредельного спирта (енола), который изомеризуется в уксусный альдегид (в случае ацетилена):

На первой стадии образуются енолы (соединения, в молекулах которых гидроксогруппы соединены с атомом углерода при двойной связи).

Т.к. образующийся на промежуточном этапе виниловый спирт неустойчив, то происходит перегруппировка в термодинамически белее стабильную изомерную структуру – уксусный альдегид. Эта перегруппировка получила название перегруппировка Эльтекова-Эрленмейера.

Реакция имеет большое практическое значение, т. к. уксусный альдегид применяется в технике для получения уксусной кислоты и этилового спирта.

При гидратации гомологов ацетилена образуются кетоны, т.к. присоединение воды по тройной связи происходит в соответствии с правилом Марковникова, и группа -ОН оказывается не у концевого, а у центрального углеродного атома:

Источник

Реакция для получения альдегида по способу кучерова

1. Окисление спиртов

В лаборатории карбонильные соединения получают окислением спиртов в жестких условиях в присутствии сильных окислителей (дихромата калия К2Cr2O7 или перманганата калия КМnО4) в серной кислоте Н2SO4. В качестве окислителя можно использовать оксид меди (II) при нагревании.

При окислении первичных спиртов образуются альдегиды:

Видеоопыт «Окисление этилового спирта оксидом меди (II)»

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот:

Читайте также:  Способ заработать бизнес идеи

Чтобы предотвратить превращение альдегида в кислоту, его отгоняют в ходе реакции (tкип альдегида, не образующего межмолекулярные водородные связи, ниже tкип спирта и кислоты).

При окислении вторичных спиртов образуются кетоны:

Присоединение воды к ацетилену происходит в присутствии катализатора соли ртути (II) и идет через образование неустойчивого непредельного спирта (енола), который изомеризуется в уксусный альдегид (в случае ацетилена):

Кетоны получают при гидратации других гомологов ряда алкинов:

Раньше это был промышленный способ получения карбонильных соединений. В настоящее время этот способ находит ограниченное применение из-за загрязнения получаемых продуктов токсичными солями ртути и относительной дороговизны.

3. Каталитическое окисление алкенов кислородом воздуха

Этим способом в промышленности получают уксусный альдегид — окислением этилена кислородом воздуха (Вакер-процесс).

Эта реакция протекает в присутствии катализатора – смеси PdCl2 и CuCl2 и температуре 100 0 С:

Этим экономичным способом получают низшие альдегиды и кетоны.

Этот промышленный способ более перспективен, чем гидратация алкинов, при которой используются токсичные ртутные катализаторы.

4. Каталитическое дегидрирование спиртов

В промышленности альдегиды и кетоны получают дегидрированием спиртов, пропуская пары спирта над нагретым катализатором (Cu, соединения Ag, Cr или Zn).

Первичные спирты окисляются до альдегидов, а вторичные – до кетонов.

Этот способ получения объясняет суть названия «альдегид» (от лат. alconol dehydrogenatum – спирт, от которого «отняли» водород).

Этот способ позволяет получать карбонильные соединения, в особенности альдегиды, без побочных продуктов окисления.

В 1835 г. немецкий химик Ю. Либих выделил индивидуальное вещество, молекула которого содержала на два атома водорода меньше, чем этанол. Ученый установил состав этого соединения – С2Н4О и назвал его альдегидом (от лат. al conol dehyd rogenatum — т.е. дегидрированный спирт, «спирт, лишенный водорода»).

В 1867 г. немецкий химик-органик А. Гофман, пропуская пары метилового спирта над раскаленной платиновой спиралью, получил газообразное вещество состава СН2О, молекула которого отличается от открытого Либихом альдегида на группу -СН2— . Именно это соединение (муравьиный альдегид) открывает гомологический ряд альдегидов.

Читайте также:  Взаимодействие культурного способа устойчивости

5. Щелочной гидролиз дигалогеналканов

Реакция протекает при действии водных растворов щелочей на дигалогензамещенные углеводороды, содержащие два атома галогена у одного и того же атома углерода.

При щелочном гидролизе дигалогеналканов образуются двухатомные спирты, в которых две группы ОН соединены с одним атомом углерода. Эти вещества неустойчивы и при отщеплении воды, превращаются в карбонильные соединения.

Если два атома галогена связаны с первичным атомом углерода, то образуются альдегиды:

При гидролизе дигалогеналканов, содержащих атомы галогена у вторичного атома углерода, образуются кетоны:

Это лабораторный способ получения карбонильных соединений.

6. Пиролиз солей карбоновых кислот

При пиролизе (термическое разложение) кальциевых, бариевых солей карбоновых кислот образуются соответствующие карбонильные соединения. Из смешанной соли муравьиной и другой карбоновой кислоты получают альдегиды, а в остальных случаях образуются кетоны.

Это лабораторный способ получения карбонильных соединений.

7. Кумольный способ получения ацетона (наряду с фенолом)

Простейший кетон – ацетон – получают кумольным методом вместе с фенолом:

Это промышленный способ получения ацетона.

Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

Получение формальдегида

1. Окисление метана

Формальдегид в промышленности можно получить окислением метана кислородом воздуха при высоких температурах с использованием катализатора:

2. Окисление метанола

Основной промышленный способ получения формальдегида – окисление метанола с использованием серебряного катализатора при температуре 650 0 С и атмосферном давлении:

Реакция происходит на раскаленной серебряной сетке, через которую проходят пары ментола, смешанные с воздухом. Реакция настолько экзотермична, что выделяющейся в ходе ее теплоты достаточно для того, чтобы поддерживать сетку в раскаленном состоянии.

В настоящее время разработан перспективный способ высокотемпературного окисления метанола с использованием железомолибденовых катализаторов:

Источник

Оцените статью
Разные способы