Качественный анализ. Понятия, чувствительность реакции
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
Качественный анализ
1. Основные понятия качественного анализа
Несмотря на возросшую роль теоретических и инструментальных аспектов в курсе химии, изучение химических свойств по-прежнему составляет неотъемлемую основу любого химического образования. Важную роль в изучении свойств веществ играет курс качественного неорганического анализа. В настоящее время качественный анализ рассматривается не столько как часть аналитической химии, сколько как введение в общую химию.
Качественный анализ заключается в обнаружении отдельных элементов (или ионов), из которых состоит анализируемое вещество.
Исследуя какое-нибудь новое соединение, прежде всего, определяют из каких элементов (или ионов), оно состоит, а затем уже количественные отношения, в которых они содержатся. Поэтому качественный анализ вещества, как правило, предшествует количественному.
2. Аналитические реакции и способы их выполнения
Анализируемые вещества могут находиться в различных агрегатных состояниях (твердом, жидком и газообразном). Соответственно этому и качественные аналитические реакции могут быть выполнены „сухим” или „мокрым” путем.
Анализ сухим путем осуществляют с помощью таких приемов, как проба на окрашивание пламени, получение цветных стекол („перлов”) и рассмотрение металлических “корольков”. Эти приемы называют пирохимическими (от греч. „пир” – огонь).
При выполнении окрашивания в пламени пробы, исследуемое вещество на петле платиновой (или нихромовой) проволочки вносят в бесцветное пламя горелки. По характерной окраске пламени узнают о присутствии того или иного элемента. Например, натрий окрашивает пламя в ярко желтый цвет , калий- в фиолетовый, медь и бор – в ярко-зелёный, свинец и мышьяк – в бледно-голубой.
Окрашенные стекла, или перлы, приготовляют сплавлением исследуемого вещества с бурой Na2B407•10H2O (или с гидрофосфатом натрия-аммония NaNH4HPO4•4Н2О) в ушке платиновой проволочки над пламенем. Окраска перла указывает на присутствие того или иного металла. Например, хром окрашивает перл буры в зеленый цвет, кобальт – в синий, марганец – в фиолетовый.
Металлические корольки получаются при прокаливании анализируемых минералов на древесном угле с помощью паяльной трубки. По внешнему виду их также можно судить о составе испытуемого материала.
Анализ „сухим” путем используют главным образом в полевых условиях для качественного или полуколичественного исследования минералов и руд.
В лабораторных условиях обычно применяют анализ „мокрым” путем, который основан на реакциях в растворах. Естественно, что при этом исследуемое вещество должно быть сначала переведено в раствор. Если оно не растворяется в дистиллированной воде, то используют уксусную, соляную, азотную и другие кислоты. Химически взаимодействуя с кислотами, анализируемое вещество (соль, гидроксид или оксид) превращается в легко растворимое соединение:
В полученном растворе обнаруживают те или иные ионы.
Не все химические реакции пригодны для качественного анализа. Аналитическими являются только те реакции, которые сопровождаются каким-нибудь внешним эффектом, позволяющим установить, что химический процесс происходит: выпадением или растворением осадка, изменением окраски анализируемого раствора, выделением газообразных веществ.
Кислотно-основные реакции
Выделение свободной уксусной кислоты (обозначение г. — газ) при добавлении сильной кислоты (например, соляной или серной) используется для обнаружения ацетат-ионов. Партнером ацетат-иона в этой реакции является ион водорода, существующий в воде и гидратированной форме, формулу которой записывают обычно как Н3О + (правильнее было бы записывать (H2O)4H + или H9O4 + ). Аналогичным образом (по выделению свободного аммиака при действии сильных щелочей, например гидроксида натрия) можно обнаружить и ион аммония:
Реакции комплексообразования
Растворение малорастворимого хлорида серебра (см. ниже, «реакции осаждения») при действии аммиака происходит вследствие образования диаминного комплекса серебра.
В гидратированном ионе Cu 2+ происходит обмен молекул воды на молекулы аммиака с образованием интенсивно окрашенного синего аммиаката меди. Используются также реакции комплексообразования с органическими реагентами 8-оксихинолином, ализарином S и др.
Реакции осаждения
Ag + + Сl – ↔ AgCl (тв.)
Ионы Ag + (или Сl – ) осаждаются в виде малорастворимого хлорида серебра (о его растворении см. выше).
Ионы Ba 2+ (или SO4 2- ) осаждаются в виде малорастворимого сульфата бария.
Реакции полимеризации
Многие вещества в водных растворах способны образовывать димеры или полимеры линейного или циклического строения. Простейшим примером может служить димеризация хромат-иона с образованием бихромат-иона, сопровождающаяся изменением желтой окраски на оранжевую:
Еще одной важной в аналитическом отношении реакцией является взаимодействие ионов двух различных типов с образованием смешанного полимерного соединения, так называемого гетерополисоединения. Примером может служить взаимодействие молибдат- и фосфат-ионов:
Эта реакция применяется для обнаружения фосфат-иона по образованию желтого осадка гетерополисоединения.
Окислительно-восстановительные реакции
Эти реакции связаны с переносом электронов и могут протекать в различных формах.
1. Простой обмен электронами:
Ce 4+ + Fe 2+ ↔ Ce 3+ + Fe 3+
2. Гетерогенные реакции между ионами в растворе и твердыми веществами:
Cu 2+ + Fe (тв.) ↔ Cu(тв.) + Fe 2+
3. Реакции диспропорционирования:
2Cu + ↔ Cu 2+ + Cu(тв.)
4. Реакции компропорционирования (синпропорционирования):
Реакции с выделением газов
Для обнаружения ионов часто используют реакции с выделением газов (например, см. приведенные выше кислотно-основные реакции). Выделяющийся газ затем обычно вступает в другую реакцию, которая, собственно, и используется для обнаружения. Например, для обнаружения карбонат-ионов используют выделе- ние диоксида углерода при действии кислот. Выделяющийся газ можно затем обнаружить при помощи реакции образования малорастворимого карбоната бария:
В аналитическом отношении важное значение имеет также реакция диоксида кремния и плавиковой кислоты (HF), сопровождающаяся образованием летучих соединений кремния с фтором:
В зависимости от количества плавиковой кислоты образуется либо тетрафторид кремния, либо летучая кремнефтороводородная кислота. Чтобы равновесия указанных реакций сместить вправо, необходимо связать выделяющуюся воду путем добавления концентрированной серной кислоты. Смещение этих равновесий в обратном направлении можно использовать для обнаружения выделившихся газов по выпадению осадка диоксида кремния.
С точки зрения наблюдаемых эффектов все реакции обнаружения можно разделить на четыре группы:
- 1)образование характерных осадков,
- 2)растворение осадков,
- 3)появление (изменение) окраски,
- 4)выделение газов.
3. Качественные реакции как реакции между ионами
В качественном анализе имеют дело преимущественно с водными растворами электролитов, т. е. солей, оснований и кислот, диссоциирующих на ионы. Можно сказать, что каждый ион обладает определенными свойствами, которые он сохраняет независимо от присутствия в растворе других ионов. Например, катион водорода, присутствующий в водном растворе любой кислоты, независимо от ее аниона окрашивает синий лакмус в красный цвет и проявляет другие, характерные для него свойства.
Поскольку сильные электролиты практически полностью ионизированы, при смешении растворов в реакцию могут вступать только ионы. Проиллюстрируем это положение несколькими примерами взаимодействия веществ, дающих при диссоциации ионы Ва 2+ и SО4 2- :
Продуктом всех этих реакций является белый мелкокристаллический осадок сульфата бария, не растворимый в кислотах и щелочах.
Получение одного и того же продукта при взаимодействии трех пар различных соединений легко объясняется ионной теорией. Ведь сущность приведенных трех реакций может быть выражена следующим ионным уравнением:
Следовательно, сульфат бария ВаS04 образуется всякий раз, когда при смешении растворов катионы Ва 2+ встречаются с анионами SО4 2- . Поэтому с помощью сульфат-ионов можно обнаруживать в растворе катионы Ва 2+ и, наоборот, с помощью ионов бария – анионы SО4 2- .
Таким образом, реакции, происходящие в растворах между электролитами, это реакции между ионами. Поэтому аналитическими реакциями обнаруживают не химические вещества, а образуемые ими катионы и анионы.
Анализ мокрым путем позволяет уже по результатам качественных испытаний установить формулу соединения. Например, если в исследуемом растворе обнаружены только ионы Na + и NO3 – ,то, очевидно, что он содержит нитрат натрия (натриевую селитру). Обнаружив в исследуемом веществе катион Fe 3+ и анион S04 2- , можно считать, что это сульфат железа (III) Fe2(SO4)3.
4. Условия выполнения аналитических реакций, их чувствительность, специфичность и селективность
Выполняя аналитическую реакцию, нужно строго соблюдать определенные условия, которые зависят от свойств получающегося продукта. При несоблюдении этих условий результат не может считаться достоверным.
Одним из условий выполнения реакций является среда анализируемого раствора. Например, нельзя обнаруживать ион Са 2+ действием оксалата аммония (NH4)2C2O4 в присутствии сильной кислоты, так как оксалат кальция СаС2О4 растворим в сильных кислотах. Осадок хлорида серебра AgCl, растворимого в аммиаке NH4OH, не может быть получен в аммиачной среде. Если осадок какого-либо вещества выпадает только в нейтральной среде, то анализируемый раствор предварительно нейтрализуют кислотой или щелочью. Например, осадок гидротартрата калия KHC4H406 может быть получен только в нейтральной среде.
Другим условием выполнения реакций является поддержание необходимой температуры раствора. Большинство аналитических реакций выполняют „на холоду”, т. е. при комнатной температуре или даже при охлаждении пробирки водой под краном. Это необходимо, например, при осаждении гексагидроксостибиата (V) натрия Na[Sb(ОН)6] или гидротартрата калия. Некоторые реакции требуют нагревания до определенной температуры. Так, обнаружение иона NH4 + действием щелочи на исследуемый раствор выполняют при нагревании.
Не менее важна достаточно высокая концентрация обнаруживаемого иона в растворе. Если образующееся соединение малорастворимо и выпадает в осадок при очень небольшой концентрации открываемого иона, то говорят, что реакция высокочувствительна. Если же образующееся соединение заметно растворимо в воде, то реакцию считают малочувствительной. Такие реакции удаются лишь при сравнительно высокой концентрации обнаруживаемого иона в анализируемом растворе (или при образовании в растворе окрашенного соединения).
Чувствительность реакций характеризуют количественно при помощи двух величин – обнаруживаемого минимума и минимальной концентрации.
Обнаруживаемый минимум – это наименьшее количество иона, которое удается обнаружить с помощью данной реакции (при соблюдении необходимых условий).
Выражают обнаруживаемый минимум в миллионных долях грамма – микрограммах, иногда обозначаемых буквой γ (lγ = 1 мкг = 10 -6 г). Например, при обнаружении иона К + в виде гексахлороплатината (IV) калия K2[PtCl6] обнаруживаемый минимум составляет 0,1 мкг.
Минимальная концентрация показывает, при каком разбавлении раствора реакция еще дает положительный результат.
При обнаружении иона К + в виде гексахлороплатината (IV) калия минимальная концентрация выражается отношением 1:10 000. Следовательно, катион К + можно обнаружить, если на 1 г его в растворе приходится не более 10 000 мл воды.
Чувствительность реакций на катионы меди (II)
Реагент | Образующееся соединение | Эффект реакции | Обнаруживаемый минимум, мкг | Минимальная концентрация |
НС1 | Н[СuСl3] | 3еленое окраши- вание раствора | 1 | 1:50 000 |
NН3 | [Сu(NН3)4]Cl2 | Синее окрашивание раствора | 0,2 | 1:250 000 |
К4[Fe(CN)6] | Cu2[Fe(CN)6] | Коричневый осадок | 0,02 | 1:2 500 000 |
Из приведенных данных видно, что чувствительность реакции с гексациано-ферратом (II) калия в 10 раз выше, чем реакции с аммиаком, и в 50 раз выше, чем с соляной кислотой.
В качественном анализе применяют только те реакции, обнаруживаемый минимум которых не превышает 50 мкг, а минимальная концентрация ниже, чем 1:1000.
Чувствительность реакций сильно зависит от условий их выполнения: концентрации реактивов, продолжительности их действия, способа наблюдения внешнего эффекта, температуры, присутствия посторонних веществ и т.д
Помимо чувствительности, большое значение для анализа имеет специфичность реакции.
Специфической называют такую реакцию, которая позволяет обнаружить ион в присутствии любых других ионов.
Например, специфична реакция обнаружения иона NH4 + действием щелочи при нагревании, так как в этих условиях аммиак NH3 может выделяться только из солей аммония:
Специфична и широко известная реакция на иод с крахмалом. Однако специфических реакций сравнительно немного.
Гораздо более распространены так называемые селективные, или избирательные, реакции, которые дают сходный внешний эффект с несколькими ионами. Например, оксалат аммония образует осадки с ограниченным числом катионов (Са 2+ , Ва 2+ , Sr 2+ и др.). Чем меньше таких ионов, тем более выражена избирательность (селективность) реакции.
Групповыми реактивами называются реактивы , которые одинаково реагируют с рядом ионов и могут применяться для отделения целой группы сходных ионов от других ионов.
Иногда посторонний ион, присутствуя в растворе, не взаимодействует непосредственно с прибавляемым реактивом, но, тем не менее, понижает чувствительность выполняемой реакции. По мере увеличения концентрации постороннего иона отрицательное влияние его усиливается. Наконец, при некотором предельном отношении концентраций обнаруживаемого и постороннего ионов реакция становится недостоверной. Например, катион РЬ 2+ можно обнаружить в виде иодида свинца РbI2 действием иодида калия в присутствии постороннего иона Сu 2+ , но только в том случае, если концентрация Сu 2+ будет превышать концентрацию РЬ 2+ не более чем в 25 раз. В данном случае предельное отношение концентраций РЬ 2+ и Сu 2+ равно 1 : 25.
Чтобы устранить влияние посторонних ионов, иногда пользуются так называемыми маскирующими средствами, которые переводят мешающие ионы в малодиссоциирующие или комплексные соединения. Концентрация посторонних ионов в растворе сильно понижается и помехи устраняются.
5. Методы повышения чувствительности реакций
Чувствительность реакции зависит от многих факторов и может быть повышена, если тем или иным способом увеличить концентрацию обнаруживаемого иона в растворе.
Обогатить раствор обнаруживаемым ионом и, следовательно, повысить чувствительность реакции можно с помощью ионного обмена, экстрагирования соединений органическими растворителями, путем соосаждения, а также некоторыми другими способами (дистилляция, электролиз, удаление примесей, мешающих выполнению реакции и т. п.).
Метод ионного обмена. Для концентрирования ионов этим методом в качественном анализе используют так называемые ионообменные смолы (иониты). Одни из них поглощают из раствора катионы и называются катионитами, другие сорбируют анионы и именуются анионитами.
Процесс ведут либо в статических условиях, внося зерна ионита в исследуемый раствор, либо в динамических, пропуская анализируемый раствор через “колонку” – трубку, наполненную ионитом. При этом каждое зерно ионита накапливает в себе обнаруживаемый ион.
Концентрирование ионов в статических условиях несложно. Переносят 2-3 мл испытуемого раствора в маленький фарфоровый тигель. Для поглощения катионов прибавляют 35-40 набухших зерен катионита (КУ-2, KУ-l или СБС) в виде двух капель суспензии, а для извлечения анионов – такое же количество зерен анионита (AB-l7, AB-16 или ЭДЭ-10П). Перемешивают содержимое тигля стеклянной палочкой 5 мин, сливают жидкость, а зерна ионита, адсорбировавшие обнаруживаемый ион, помещают в каплю реактива и наблюдают форму и цвет образовавшихся кристаллов.
Этот метод позволяет повысить чувствительность многих реакций в десятки и сотни раз.
Метод экстрагирования. Экстрагирование – это один из видов фазового разделения веществ. Оно основано на том, что некоторые органические растворители, не смешивающиеся с водой, обладают способностью извлекать из водных растворов отдельные компоненты смесей.
Для экстрагирования подбирают такой органический растворитель, в котором определяемое вещество растворяется хорошо, а другие компоненты смеси практически не растворяются.
Смесь двух жидкостей и растворенного вещества встряхивают, после чего оставляют стоять до появления резкой границы раздела между жидкостями. Из полученного экстракта определяемое вещество выделяют выпариванием, высушиванием, перегонкой или кристаллизацией.
Например, ионы железа (III) из солянокислых водных растворов чаще всего экстрагируют диэтиловым эфиром в виде железохлористоводородной кислоты Н[FeC14] желтого цвета. Это позволяет отделить железо от других элементов, не образующих хлоридных комплексов.
Метод соосаждения. Это один из наиболее простых и эффективных способов концентрирования ионов.
В раствор, содержащий следы определяемого иона, вводят посторонний катион (или анион), который и осаждают подходящим реактивом в виде малорастворимого соединения. При этом соосаждаются и следы определяемого иона. Таким образом, получающийся осадок играет роль коллектора, т. е. собирателя определяемых ионов. Установлено, что чем меньше концентрация определяемого иона в растворе, тем полнее он сорбируется коллектором.
Причины соосаждения определяемых ионов с коллекторами различны. К ним относятся адсорбция соосаждаемых ионов (или соединений) на поверхности коллектора, ионный обмен, образование твердых растворов.
В аналитической практике используются как неорганические (гидроокиси алюминия и железа, фосфат железа), так и органические соосадители (малорастворимые соединения ионов органических веществ, например метилового фиолетового, метилового оранжевого, нафталин,α -сульфокислоты, диметиламиноазобензола). Предпочтение отдается органическим соосадителям, которые позволяют выделять определяемые ионы из растворов с концентрацией до 1 : 10 13 и отличаются высокой селективностью. Кроме того, органические соосадители легко озоляются, благодаря чему соосаждаемые элементы удается получить в чистом виде.
Следует помнить, что несоблюдение оптимальных условий выполнения той или иной реакции (температура, рН раствора, количество реагента) ведет к понижению ее чувствительности.
Источник