- БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ
- Реактивный способ движения медуз
- Реактивное бегство морских моллюсков гребешков
- Реактивный насос личинки стрекозы-коромысла
- Реактивные импульсы нервной «автострады» кальмаров
- Реактивный двигатель кальмара
- Реактивное движение медуза
- Описание презентации по отдельным слайдам:
- Охрана труда
- Библиотечно-библиографические и информационные знания в педагогическом процессе
- Охрана труда
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Общая информация
- Похожие материалы
- One Christmas Story
- Birch is a symbol of Russia
- My land
- Restaurant kitchens vermenskoy
- Russia
- Хорошо ли ты знаешь Великобританию?
- I newspaper
- America Americans at glance
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Безлимитный доступ к занятиям с онлайн-репетиторами
- Подарочные сертификаты
БИОФИЗИКА: РЕАКТИВНОЕ ДВИЖЕНИЕ В ЖИВОЙ ПРИРОДЕ
Предлагаю читателям зелёных страничек заглянуть в увлекательный мир биофизики и познакомиться с основными принципами реактивного движения в живой природе. Сегодня в программе: медуза корнерот – самая крупная медуза Чёрного моря, морские гребешки, предприимчивая личинка стрекозы-коромысла, восхитительный кальмар с его непревзойдённым реактивным двигателем и замечательные иллюстрации в исполнении советского биолога и художника-анималиста Кондакова Николая Николаевича.
По принципу реактивного движения в живой природе передвигается целый ряд животных, например медузы, морские моллюски гребешки, личинки стрекозы-коромысла, кальмары, осьминоги, каракатицы… Познакомимся с некоторыми из них поближе 😉
Реактивный способ движения медуз
Медузы – одни из самых древних и многочисленных хищников на нашей планете! Тело медузы на 98% состоит из воды и в значительной части составлено из обводнённой соединительной ткани – мезоглеи, функционирующей как скелет. Основу мезоглеи составляет белок коллаген. Студенистое и прозрачное тело медузы по форме напоминает колокол или зонтик (в диаметре от нескольких миллиметров до 2,5 м). Большинство медуз двигаются реактивным способом, выталкивая воду из полости зонтика.
Медузы Корнероты (Rhizostomae), отряд кишечнополостных животных класса сцифоидных. Медузы (до 65 см в диаметре) лишены краевых щупалец. Края рта вытянуты в ротовые лопасти с многочисленными складками, срастающимися между собой с образованием множества вторичных ротовых отверстий. Прикосновение к ротовым лопастям может вызвать болезненные ожоги, обусловленные действием стрекательных клеток. Около 80 видов; обитают преимущественно в тропических, реже в умеренных морях. В России – 2 вида: Rhizostoma pulmo обычен в Чёрном и Азовском морях, Rhopilema asamushi встречается в Японском море.
Реактивное бегство морских моллюсков гребешков
Морские моллюски гребешки, обычно спокойно лежащие на дне, при приближении к ним их главного врага – восхитительно медлительной, но чрезвычайно коварной хищницы – морской звезды – резко сжимают створки своей раковины, с силой выталкивая из неё воду. Используя, таким образом, принцип реактивного движения, они всплывают и, продолжая открывать и захлопывать раковину, могут отплывать на значительное расстояние. Если же гребешок по какой-то причине не успевает спастись своим реактивным бегством, морская звезда обхватывает его своими руками, вскрывает раковину и поедает…
Морской Гребешок (Pecten), род морских беспозвоночных животных класса двустворчатых моллюсков (Bivalvia). Раковина гребешка округлая с прямым замочным краем. Поверхность её покрыта расходящимися от вершины радиальными ребрами. Створки раковины смыкаются одним сильным мускулом. В Чёрном море обитают Pecten maximus, Flexopecten glaber; в Японском и Охотском морях – Mizuhopecten yessoensis (до 17 см в диаметре).
Реактивный насос личинки стрекозы-коромысла
Нрав у личинки стрекозы-коромысла, или эшны (Aeshna sp.) не менее хищный, чем у её крылатых сородичей. Два, а иногда и четыре года живёт она в подводном царстве, ползает по каменистому дну, выслеживая мелких водных обитателей, с удовольствием включая в свой рацион довольно-таки крупнокалиберных головастиков и мальков. В минуты опасности личинка стрекозы-коромысла срывается с места и рывками плывёт вперёд, движимая работой замечательного реактивного насоса. Набирая воду в заднюю кишку, а затем резко выбрасывая её, личинка прыгает вперёд, подгоняемая силой отдачи. Используя, таким образом, принцип реактивного движения, личинка стрекозы-коромысла уверенными толчками-рывками скрывается от преследующей её угрозы.
Реактивные импульсы нервной «автострады» кальмаров
Во всех, приведённых выше случаях (принципах реактивного движения медуз, гребешков, личинок стрекозы-коромысла), толчки и рывки отделены друг от друга значительными промежутками времени, следовательно большая скорость движения не достигается. Чтобы увеличилась скорость движения, иначе говоря, число реактивных импульсов в единицу времени, необходима повышенная проводимость нервов, которые возбуждают сокращение мышц, обслуживающих живой реактивный двигатель. Такая большая проводимость возможна при большом диаметре нерва.
Известно, что у кальмаров самые крупные в животном мире нервные волокна. В среднем они достигают в диаметре 1 мм – в 50 раз больше, чем у большинства млекопитающих – и проводят возбуждение они со скоростью 25 м/с. А у трёхметрового кальмара дозидикуса (он обитает у берегов Чили) толщина нервов фантастически велика – 18 мм. Нервы толстые, как верёвки! Сигналы мозга – возбудители сокращений – мчатся по нервной «автостраде» кальмара со скоростью легкового автомобиля – 90 км/ч.
Благодаря кальмарам, исследования жизнедеятельности нервов ещё в начале 20 века стремительно продвинулись вперёд. «И кто знает, – пишет британский натуралист Фрэнк Лейн, – может быть, есть сейчас люди, обязанные кальмару тем, что их нервная система находится в нормальном состоянии…»
Быстроходность и манёвренность кальмара объясняется также прекрасными гидродинамическими формами тела животного, за что кальмара и прозвали «живой торпедой».
Кальмары (Teuthoidea), подотряд головоногих моллюсков отряда десятиногих. Размером обычно 0,25-0,5 м, но некоторые виды являются самыми крупными беспозвоночными животными (кальмары рода Architeuthis достигают 18 м, включая длину щупалец).
Тело у кальмаров удлинённое, заострённое сзади, торпедообразное, что определяет большую скорость их движения как в воде (до 70 км/ч), так и в воздухе (кальмары могут выскакивать из воды на высоту до 7 м).
Реактивный двигатель кальмара
Реактивное движение, используемое ныне в торпедах, самолётах, ракетах и космических снарядах, свойственно также головоногим моллюскам – осьминогам, каракатицам, кальмарам. Наибольший интерес для техников и биофизиков представляет реактивный двигатель кальмаров. Обратите внимание, как просто, с какой минимальной затратой материала решила природа эту сложную и до сих пор непревзойдённую задачу 😉
В сущности, кальмар располагает двумя принципиально различными двигателями (рис. 1а). При медленном перемещении он пользуется большим ромбовидным плавником, периодически изгибающимся в виде бегущей волны вдоль корпуса тела. Для быстрого броска кальмар использует реактивный двигатель. Основой этого двигателя является мантия – мышечная ткань. Она окружает тело моллюска со всех сторон, составляя почти половину объёма его тела, и образует своеобразный резервуар – мантийную полость – «камеру сгорания» живой ракеты, в которую периодически засасывается вода. В мантийной полости находятся жабры и внутренние органы кальмара (рис. 1б).
При реактивном способе плавания животное производит засасывание воды через широко открытую мантийную щель внутрь мантийной полости из пограничного слоя. Мантийная щель плотно «застёгивается» на специальные «запонки-кнопки» после того как «камера сгорания» живого двигателя наполнится забортной водой. Расположена мантийная щель вблизи середины тела кальмара, где оно имеет наибольшую толщину. Сила, вызывающая движение животного, создаётся за счёт выбрасывания струи воды через узкую воронку, которая расположена на брюшной поверхности кальмара. Эта воронка, или сифон, – «сопло» живого реактивного двигателя.
«Сопло» двигателя снабжено специальным клапаном и мышцы могут его поворачивать. Изменяя угол установки воронки-сопла (рис. 1в), кальмар плывёт одинаково хорошо, как вперёд, так и назад (если он плывет назад, – воронка вытягивается вдоль тела, а клапан прижат к её стенке и не мешает вытекающей из мантийной полости водяной струе; когда кальмару нужно двигаться вперёд, свободный конец воронки несколько удлиняется и изгибается в вертикальной плоскости, её выходное отверстие сворачивается и клапан принимает изогнутое положение). Реактивные толчки и всасывание воды в мантийную полость с неуловимой быстротой следуют одно за другим, и кальмар ракетой проносится в синеве океана.
1а) кальмар – живая торпеда; 1б) реактивный двигатель кальмара; 1в) положение сопла и его клапана при движении кальмара назад и вперёд.
На забор воды и её выталкивание животное затрачивает доли секунды. Засасывая воду в мантийную полость в кормовой части тела в периоды замедленных движений по инерции, кальмар тем самым осуществляет отсос пограничного слоя, предотвращая таким образом срыв потока при нестационарном режиме обтекания. Увеличивая порции выбрасываемой воды и учащая сокращения мантии, кальмар легко увеличивает скорость движения.
Реактивный двигатель кальмара очень экономичен, благодаря чему он может достигать скорости 70 км/ч; некоторые исследователи считают, что даже 150 км/ч!
Инженеры уже создали двигатель, подобный реактивному двигателю кальмара: это водомёт, действующий при помощи обычного бензинового или дизельного двигателя. Почему же реактивный двигатель кальмара по-прежнему привлекает внимание инженеров и является объектом тщательных исследований биофизиков? Для работы под водой удобно иметь устройство, работающее без доступа атмосферного воздуха. Творческие поиски инженеров направлены на создание конструкции гидрореактивного двигателя, подобного воздушно-реактивному…
Кондаков Николай Николаевич (1908–1999) – советский биолог, художник-анималист, кандидат биологических наук. Основным вкладом в биологическую науку стали выполненные им рисунки различных представителей фауны. Эти иллюстрации вошли во многие издания, такие как Большая Советская Энциклопедия, Красная книга СССР, в атласы животных и в учебные пособия.
Акимушкин Игорь Иванович (01.05.1929–01.01.1993) – советский биолог, писатель – популяризатор биологии, автор научно-популярных книг о жизни животных. Лауреат премии Всесоюзного общества «Знание». Член Союза писателей СССР. Наиболее известной публикацией Игоря Акимушкина является шеститомная книга «Мир Животных».
Материалы этой статьи полезно будет применить не только на уроках физики и биологии, но и во внеклассной работе.
Биофизический материал является чрезвычайно благодатным для мобилизации внимания учащихся, для превращения абстрактных формулировок в нечто конкретное и близкое, затрагивающее не только интеллектуальную, но и эмоциональную сферу.
Литература:
§ Кац Ц.Б. Биофизика на уроках физики
Москва: издательство «Просвещение», 1988
§ § Акимушкин И.И. Приматы моря
Москва: издательство «Мысль», 1974
§ Тарасов Л.В. Физика в природе
Москва: издательство «Просвещение», 1988
Источник
Реактивное движение медуза
Описание презентации по отдельным слайдам:
Описание слайда:
Описание слайда:
Описание слайда:
Описание слайда:
Реактивное движение.
«Земля – колыбель, но нельзя же вечно жить в колыбели».
Описание слайда:
Под реактивным движением понимаем движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела.
Описание слайда:
Николай Иванович Кибальчич (1853-1881)
Описание слайда:
Жюль Верн
Писатель фантаст, он отправил свой корабль на луну из пушки («Из пушки на луну»1867г.)
Описание слайда:
Константин Эдуардович Циолковский
(1857-1935).
Разработал теорию движения ракет, вывел формулу для расчета и скорости, был первым, кто предложил использовать многоступенчатые ракеты
Описание слайда:
Сергей Павлович Королёв
(1907-1966). конструктор космических кораблей, реализовавший идеи Циолковского
Описание слайда:
В любой ракете всегда имеется: оболочка и топливо с окислителем. Основную массу ракеты составляет топливо с окислителем. Топливо и окислитель с помощью насосов подается в камеру сгорания. Топливо, сгорая, превращается в газ высокой температуры и высокого давления. Благодаря большой разности давления в камере сгорания и в космическом пространстве, газы с камеры сгорания мощной струей устремляются наружу через сопло.
Описание слайда:
Описание слайда:
Многоступенчатые ракеты
Развивают большие скорости
Предназначены для более дальних полётов
Описание слайда:
После того как топливо и окислитель первой ступени будет полностью израсходованы, эта ступень автоматически отбрасывается и в действие вступает двигатель второй ступени.
Уменьшение общей массы ракеты путём отбрасывания уже не нужной ступени позволяет сэкономить топливо и окислитель и увеличить скорость ракеты.
Таким же образом отбрасывается вторая ступень
Описание слайда:
Возвращение на землю
Если возвращение корабля на Землю или какую другую планету не планируется. то третья ступень используется как и первые две.
Если корабль должен совершить посадку то третья ступень используется для торможения корабля перед посадкой. При этом ракету разворачивают на 180 градусов, чтобы сопло оказалось впереди. Тогда вырывающейся из неё газ сообщает ей импульс, направленный против скорости её движения и ракета тормозит
Описание слайда:
Юрий Алексеевич Гагарин
1934-1968.
Первый космонавт в истории человечества
12 апреля 1961 года совершил первый пилотируемый космический полет на корабле «Восток»
Описание слайда:
Реактивное движение
в природе
(Кальмар является самым крупным беспозвоночным обитателем океанических глубин. Он передвигается по принципу реактивного движения, вбирая воду в себя. А затем с огромной силой проталкивая ее через особое отверстие – «воронку», и с большой скоростью (до 70 км/ч) двигается толчками назад.
Кальмар
Описание слайда:
Описание слайда:
Презентацию подготовила:
Ученица 9а класса Горох Анна
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Курс повышения квалификации
Охрана труда
- Сейчас обучается 95 человек из 44 регионов
Курс профессиональной переподготовки
Библиотечно-библиографические и информационные знания в педагогическом процессе
- Сейчас обучается 335 человек из 66 регионов
Курс профессиональной переподготовки
Охрана труда
- Сейчас обучается 171 человек из 47 регионов
Ищем педагогов в команду «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
также Вы можете выбрать тип материала:
Общая информация
Международная дистанционная олимпиада Осень 2021
Похожие материалы
One Christmas Story
Birch is a symbol of Russia
My land
Restaurant kitchens vermenskoy
Russia
Хорошо ли ты знаешь Великобританию?
I newspaper
America Americans at glance
Не нашли то что искали?
Воспользуйтесь поиском по нашей базе из
5311227 материалов.
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Безлимитный доступ к занятиям с онлайн-репетиторами
Выгоднее, чем оплачивать каждое занятие отдельно
Минпросвещения будет стремиться к унификации школьных учебников в России
Время чтения: 1 минута
ЕСПЧ запретил учителям оскорблять учеников
Время чтения: 3 минуты
В 16 регионах ввели обязательную вакцинацию для студентов старше 18 лет
Время чтения: 1 минута
Рособрнадзор откажется от ОС Windows при проведении ЕГЭ до конца 2024 года
Время чтения: 1 минута
Минпросвещения работает над единым подходом к профилактике девиантного поведения детей
Время чтения: 1 минута
Минпросвещения разрабатывает образовательный минимум для подготовки педагогов
Время чтения: 2 минуты
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник