- Как доступно объяснить ребёнку суть деления чисел
- Как объяснить деление дошкольнику
- Делим поровну
- Деление с остатком
- Видео: как освоить деление за 5–10 минут
- Что нужно для освоения деления в младшем школьном возрасте
- Эффективные способы объяснения деления школьникам
- Деление на основе знания таблицы умножения
- Деление двузначных чисел на однозначные
- Деление способом группирования
- Как объяснить деление в столбик
- Деление без остатка
- Деление с остатком
- Видео: как научиться делить в столбик
- Деление на двузначные числа
- Видео: тренажёр быстрого деления в уме для школьников
- Деление
- Числа при делении
- Чтение числовых выражений
- Деление на 1
- Деление на 0
- Связь деления и умножения
- Чётные и нечётные числа
- В несколько раз меньше
- Для примера решим задачу:
- Вывод: Если в задаче есть слова «в . раз меньше», то задача решается делением.
- Во сколько раз больше? Во сколько раз меньше?
- Алгоритмы устных способов деления двузначных и трёхзначных чисел консультация по математике (3 класс) на тему
- Скачать:
- Предварительный просмотр:
Как доступно объяснить ребёнку суть деления чисел
Освоение арифметических действий порой даётся детям нелегко. Но если родители дошкольников, непонимающих умножение, деление, относительно спокойны: ещё есть пару лет до школы, а там — будет видно, то мамы и папы младших школьников иногда приходят в исступление от бессилия растолковать своему чаду, что значит деление чисел. На самом деле, ничего сложного для ребёнка и методически непостижимого для взрослого в этом нет.
Как объяснить деление дошкольнику
Малыши-дошколята вовлекаются в процесс деления с самого раннего возраста, например, когда угощают конфетами друзей, делятся игрушками в песочнице. Поэтому задача родителей заключается в том, чтобы обобщить этот детский опыт для освоения азов арифметики, дать понимание принципа деления, то есть разделения предметов на равные доли. При этом базовыми знаниями, необходимыми для освоения деления в дошкольном возрасте, является понимание, что такое целое, больше/меньше. Если с этими понятиями ребёнок знаком, то можно вооружаться играми и на их основе поэтапно объяснять деление.
Делим поровну
Для начала нужно показать малышу на доступном для его понимания уровне, что такое деление, используя наглядность. В этом поможет игра «Тебе и мне поровну».
Материалы для тренировки арифметических действий должны быть вкусными
- Малыш получает 6 конфет.
- Взрослый просит поделить конфеты на двоих так, чтобы у каждого было одинаковое количество.
- Ребёнок раскладывает конфеты по одной, пересчитывая их в обеих кучках.
- После того, как конфеты поделены, юный математик ещё раз пересчитывает их в каждой кучке, а затем считает, сколько сладостей всего.
- Количество «делителей» можно увеличивать, но «делимое» всегда должно делиться без остатка. Так у ребёнка формируется представление о том, что такое поровну.
Деление с остатком
Освоив деление без остатка, можно переходить к следующему этапу — игре «Всем поровну и «хвостик».
Оставшееся яблоко можно отдать взрослому или игрушке, а потому сравнить, у кого больше/меньше
- Ребёнок получает 4 яблока.
- Взрослый просит разделить их поровну между тремя членами семьи.
- Оставшееся яблоко является остатком, который получается тогда, когда поровну поделить нельзя.
Разобравшись с делением поровну и с остатком, можно переходить к освоению абстрактного деления, то есть вычислениям с использованием цифр, а не конфет-яблок-игрушек. Для этого нужно сказать, что первое число — это то, что мы делим: конфеты, игрушки, яблоки, а второе — участники этого деления, то есть члены семьи, друзья. Но главное здесь, сколько предметов в итоге будет у участников.
Видео: как освоить деление за 5–10 минут
Что нужно для освоения деления в младшем школьном возрасте
Деление — это не первое арифметическое действие, которое осваивают дети. Поэтому, прежде чем браться за «делимое-делитель-частное», нужно обязательно выяснить, знает ли ребёнок разряды чисел и понимает ли принципы:
По аналогии с таблицей умножения, существует таблица деления, которую также можно заучить. Однако методисты склоняются к тому, что гораздо важнее понимание ребёнком механизмов выпонения арифметического действия, чем механическое заучивание.
Таблицей деления дети могут проверять решения примеров
Эффективные способы объяснения деления школьникам
Все способы объяснения можно условно поделить на академичные и образные. Первые опираются на цифры, то есть записываются в виде арифметических примеров, вторые — на конкретные предметы: конфеты, мячи и т. д., которые умозрительно делятся между людьми, игрушками.
В работе с учениками начальной школы эффективным будет синтетический способ, совмещающий опору на образы и цифры одновременно.
Деление на основе знания таблицы умножения
Для понимания сути деления стоит обратиться к вычислениям с опорой на таблицу умножения.
- Записываем пример: 2 х 5 = 10.
- Берём 10 монет и просим поделить их на двоих — получается две стопки по 5 монет.
- Далее 10 монет делим на пятерых — получается 5 стопок по 2 монеты.
- Вывод — при делении мы выясняем, сколько раз каждый множитель помещается в произведении.
На этом приёме разъясняем понятийную базу: то число, которое делится, называется делимое, то число, на которое делится — делителем, а результат — частным.
Поскольку деление обратно умножению, то второе может проверить результат первого.
Первое время для закрепления навыка можно зарисовывать схему перестановки значений при делении и при проверки умножением
- Делимое делим на делитель, то есть 10 : 2.
- Получаем частное — 5.
- Проверяем умножением, то есть частное умножаем на делитель — 5 х 2.
- Получаем 10, что в исходном примере является делимым.
Деление двузначных чисел на однозначные
Чтобы разделить двузначное число, не являющееся произведением таблицы умножения, на однозначное, нужно каждую цифру делимого разделить на делитель и записать первое частное десятками, а второе — единицами. Например, 86 : 2.
- Делим 8 на 2. Получаем 4.
- Делим 6 на 2. Получаем 3.
- Ответ — 43.
- Проверяем — 43 х 2 = 86.
Деление способом группирования
Суть этого способа деления заключается в подсчёте количества групп равных делителю, которые помещаются в делимое. Результат будет частным.
- Задача состоит в распределении мячей между командами. Решаем пример — 30 : 3.
Группирование предполагает использование наглядных материалов
Как объяснить деление в столбик
Поскольку деление может быть без остатка, а может быть с остатком, рассмотрим два варианта объяснение такого арифметического действия.
Деление без остатка
- Решим пример 396 : 3.
Выполняя деление в столбик, ребёнок должен правильно оформить запись, чтобы значения «не съехали» с нужных позиций
Деление с остатком
- Решим пример 90 : 4.
Важно обратить внимание ребёнка на то, что перед добавлением нуля к остатку в столбике, нужно поставить десятичную запятую в частном
Видео: как научиться делить в столбик
Деление на двузначные числа
Если в делителе есть десятки, сотни, то для облегчения решения делитель можно упростить, разбив на единицы (десятки).
Для деления на десятки нужно воспользоваться правилом упрощения
- Решим пример — 405 : 15.
- Разобьём 15 на единицы, на 5 и 3 — их произведение равно 15.
- Теперь решаем два примера. Сначала 405 : 5. Частное 81.
- Затем 81 : 3. Частное 27.
- Результат — 405 : 15 = 27.
Видео: тренажёр быстрого деления в уме для школьников
Объяснить деление можно не только школьнику, но и дошкольнику. Причём не только в условиях детского сада, школы, но и дома. Для этого нужно убедиться, что ребёнок имеет опорные знания, и у родителя есть запас времени, терпения для регулярных занятий со своим чадом.
Источник
Деление
В этом разделе познакомимся с делением и узнаем, что деление – это математическая операция, обратная умножению.
Умножение – это последовательное сложение чисел, а деление – это последовательное вычитание чисел.
В математике существует знак для умножения — это точка ( • ) посередине строки между числами, которые нужно перемножить, а для деления существует особый знак — это две точки ( : ) между числами, которые нужно поделить между собой.
Как ёжикам поделить между собой яблоки поровну?
Нужно воспользоваться действием деления и узнать, сколько раз по 3 содержится в 6.
1) 6 : 3 = 2 (яб.) — мы узнали, сколько яблок получит каждый ёжик.
2) 6 : 2 = 3 (ёж.) — мы узнали, сколько ёжиков получат по 2 яблока.
3) 2 • 3 = 6 (яб.) — мы узнали, сколько яблок нужно, чтобы у каждого из трёх ёжиков было по 2 яблока.
Любой пример на умножение можно представить двумя примерами на деление.
Например, для выражения 6 • 4 = 24 есть два обратных выражения:
24 : 4 = 6 — нужно из 24 вычесть число 4 ровно 6 раз.
24 : 6 = 4 — нужно из 24 вычесть число 6 ровно 4 раз.
Числа при делении
При делении, как и при другом математическом действии, каждое число имеет свое название.
Число, которое делят, называется делимое.
Число, на которое делят, называется делитель.
Результат деления называется частное.
Чтение числовых выражений
Этот пример можно прочитать по-разному.
- 24 разделить на 6 равняется 4.
- 24 уменьшить в 6 раз – получится 4.
- Делимое – 24, делитель – 6, частное – 4.
- Частное от деления числа 24 на 6 равно 4.
Деление на 1
Деление на 0
Деление числа само на себя
Связь деления и умножения
Чётные и нечётные числа
Числа, которые делятся на 2 без остатка, называются чётными, а числа, которые не делятся на 2 без остатка, называются нечётными.
Чётные: 6, 22 44, 60, 74, 82, 96
Нечётные: 7, 13, 21, 37, 45, 97
В несколько раз меньше
Для примера решим задачу:
В магазине было 8 котят, а лисичек в 4 раза меньше. Сколько было лисичек?
Значит, чтобы узнать, сколько было лисичек, нужно 8 : 4 = 2 (л.)
Вывод: Если в задаче есть слова «в . раз меньше», то задача решается делением.
Во сколько раз больше? Во сколько раз меньше?
Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?
Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?
Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.
Поделись с друзьями в социальных сетях:
Источник
Алгоритмы устных способов деления двузначных и трёхзначных чисел
консультация по математике (3 класс) на тему
Для успешного овладения учащимися 3-4 классов устным счётом я составила свои алгоритмы для некоторых случаев деления двузначных и трёхзначных чисел методом подбора.
Скачать:
Вложение | Размер |
---|---|
algoritmy.docx | 14.28 КБ |
Предварительный просмотр:
Для успешного овладения учащимися 3-4 классов устным счётом я составила свои алгоритмы для некоторых случаев деления двузначных и трёхзначных чисел методом подбора.
Алгоритмы устных способов деления двузначных и трёхзначных чисел
Алгоритм вычисления вида 48 : 2
Для того чтобы вычислить выражение вида 48 : 2, надо:
1) разделить единицы на делитель;
2) разделить десятки на делитель;
3) сложить полученные частные;
4) оформить результат вычисления.
Например: 48 : 2 = (8+40) : 2 = 8 : 2 + 40 : 2 = 4+20 = 24.
Алгоритм вычисления вида 57 : 3
Для того чтобы вычислить выражение вида 57 : 3, надо:
1) разделить единицы на делитель;
2) число 7 на 3 не делится, занимаем десяток;
3) число 17 на 3 не делится, занимаем ещё десяток;
4) число 27 на 3 делится, ответ 9;
5) разделить десятки на делитель, два занимали, осталось три десятка; 30 на 3 делится, ответ 10;
6) сложить полученные частные;
7) оформить результат вычисления.
Например: 57 : 3 = (27+30) : 3 = 27 : 3 + 30 : 3 = 9+10 = 19.
Алгоритм деления двузначного числа на двузначное число вида 72 : 18
Для того, чтобы разделить двузначное число на двузначное методом подбора, надо:
1) определить количество цифр в частном, при делении десятков на десятки получаются единицы, значит, в частном будет одна цифра;
2) делим единицы на единицы;
3) число 2 на 8 не делится, занимаем десяток;
4) число 12 на 8 не делится, занимаем ещё десяток;
5) число 22 на 8 не делится, занимаем ещё десяток;
6) число 32 на 8 делится, ответ 4;
5) делим десятки на десятки, 3 занимали, осталось 4 десятка; 4 на 1 делится, ответ тоже 4;
6) сравниваем полученные ответы, они совпадают, следовательно частное определено верно;
7) делаем проверку.
Алгоритм деления двузначного числа на двузначное число вида 75 : 25
Для того, чтобы разделить двузначное число на двузначное методом подбора, надо:
1) определить количество цифр в частном, при делении десятков на десятки получаются единицы, значит в частном будет одна цифра;
2) делим единицы на единицы;
3) число 5 на 5 делится, ответ 1;
4) делим десятки на десятки, 7 на 2 не делится без остатка, значит ответ 1 не верный;
5) занимаем десяток, число 15 на 5 делится, ответ 3;
6) делим десятки на десятки, один занимали, осталось 6 десятков, 6 на 2 делится, ответ 3;
7) сравниваем полученные ответы, они совпадают, следовательно частное определено верно;
8) делаем проверку.
Алгоритм деления трёхзначного числа на двузначное число вида 196 : 28
Для того, чтобы разделить трёхзначное число на двузначное методом подбора, надо:
1) определить количество цифр в частном, в частном будет одна цифра;
2) делим единицы на единицы, число 6 на 8 не делится, занимаем десяток;
3) число 16 на 8 делится, ответ 2;
4) делим десятки на десятки, один занимали, осталось 18 десятков, 18 на 2 делится, ответ 9;
5) сравниваем полученные ответы, они не совпадают, следовательно, частное определено не верно;
6) делим единицы на единицы, число 6 на 8 не делится, занимаем десятки;
7) 56 на 8 делится, ответ 7;
8) делим десятки на десятки, пять занимали, осталось 14, 14 на 2 делится, ответ 7.
9) сравниваем полученные ответы, они совпадают, следовательно частное определено верно;
Источник