Разные способы чтения примеров умножения

Умножение

В этом разделе познакомимся с умножением и узнаем, что сложение одинаковых слагаемых можно заменить умножением.

В математике существует знак для умножения — это точка посередине строки между числами, которые нужно перемножить.

Например, 6 + 6 + 6 + 6 = 24 можно записать по-другому: 6 • 4 = 24

Смысл действия умножения состоит в том, что при умножении находится сумма одинаковых слагаемых.

Первое число при умножении показывает, какое слагаемое повторяют несколько раз.

Второе число при умножении показывает, сколько раз повторяют это слагаемое.

Результат умножения показывает, какое число получается.

6 • 4 значит, что число 6 повторяют 4 раза: 6 + 6 + 6 + 6 = 24

6 — первый множитель

4 — второй множитель

24 — произведение

Числа при умножении

Результат умножения, или Произведение

Чтение числовых выражений

Этот пример можно прочитать по-разному.

  • 6 умножить на 4 равняется 24.
  • 6 увеличить в 4 раза – получится 24.
  • Первый множитель – 6, второй множитель – 4, произведение – 24.
  • Произведение 6 и 4 равно 24.

Умножение на 1

4 • 1 = 4, потому что это значит, что число 4 повторяют только 1 раз.

23 • 1 = 23, потому что это значит, что число 23 повторяют только 1 раз.

Умножение на 0

8 • 0 = 0, потому что это значит, что число 8 повторяют 0 раз.

26 • 0 = 0, потому что это значит, что число 26 повторяют 0 раз.

Умножение на 10

8 • 10 = 80, потому что число 8 повторяют 10 раз.

15 • 10 = 150, потому что число 15 повторяют 10 раз.

Связь деления и умножения

8 • 3 = 24, потому что 8 повторяют 3 раза.

24 : 3 = 8, потому что в 24 по 3 содержится 8 раз.

24 : 8 = 3, потому что в 24 по 8 содержится 3 раза.

В несколько раз больше

Решим задачу:

В магазине было 2 лисички, а котят в 4 раза больше. Сколько было котят?

Это значит, что котят было 4 раза по 2.

2 + 2 + 2 + 2 = 4 (к.)

Заменяем сложение умножением и получаем:

Вывод: Если в задаче есть слова «в . раз больше», то задача решается умножением.

Во сколько раз больше? Во сколько раз меньше?

Например, решим задачу: В магазине было 8 котят и 2 лисички. Во сколько раз котят было больше, чем лисичек? Во сколько раз лисичек было меньше, чем котят?

Чтобы ответить на эти вопросы, нужно узнать, сколько раз по 2 содержится в 8?

Значит, котят в 4 раза больше, чем лисичек, а лисичек в 4 раза меньше, чем котят.

Поделись с друзьями в социальных сетях:

Источник

Развитие речи на уроках математики

Развитие речи на уроках математики

учитель высшей категории, ГБОУ СОШ №390 Санкт-Петербурга

Развитие речи для учащихся начальной школы, а особенно для детей речевых классов, является решающим фактором успешного усвоения программного материала по всем предметам, так как наряду с развитием речи развиваются образное и логическое мышление, память, внимание.

Хочу поделиться опытом работы по развитию речи детей на уроках математики. Наиболее значимая и трудоемкая работа в этом направлении проводится при чтении примеров разными способами, объяснении решения задач и уравнений, разборе многозначных чисел. Для этого учащиеся должны знать наизусть все правила, которые напечатаны в учебнике, названия и обозначения арифметических действий, названия компонентов и результата каждого действия, связь между компонентами и результатом каждого действия; названия и последовательность чисел в натуральном ряду (с какого числа начинается этот ряд и как образуется каждое следующее число в этом ряду); как образуется каждая следующая счетная единица (сколько единиц в одном десятке, сколько десятков в одной сотне и т. д., сколько разрядов содержится в каждом клас­се), названия и последовательность классов.

Приведу примеры такого вида работ.

Составление рассказа про число по плану (например, число 748):

  1. Прочитай число (семьсот сорок восемь).
  2. Какое оно по количеству знаков, по четности (это трехзначное число, четное).
  3. Какое место занимает в числовом ряду (в числовом ряду стоит после числа 746 и перед числом 749).
  4. Сколько единиц каждого разряда в нем содержится (в этом числе 8 единиц I разряда, 4 единицы II разряда и 7 единиц III разряда).
  5. Сколько в нем содержится отдельных единиц, десятков, сотен и т. д. (в нем содержится отдельных 8 единиц, 4 десятка, 7 сотен).
  6. Сколько в нем содержится всего единиц, десятков, сотен и т. д. (в нем содержится всего 748 единиц, 74 десятка, 7 сотен).
  7. Представить число в виде суммы разрядных слагаемых (число можно представить в виде суммы разрядных слагаемых 700+40+8).

Таким образом, зная план, дети составляют рассказ о любом числе.

Решение уравнений с объяснением.

  1. Вспомнить название чисел при сложении. Прочитать уравнение (первое слагаемое неизвестно, второе слагаемое 23, сумма равна 70).
  2. Рассказать правило нахождения неизвестного числа (чтобы найти первое слагаемое, надо из суммы вычесть второе слагаемое или, чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое).
  3. Решаем уравнение

Х-15=30 (уменьшаемое неизвестно, вычитаемое 15, разность равна 30; чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое, решаем уравнение).

50-Х=12 (уменьшаемое 50, вычитаемое неизвестно, разность равна 12; чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность, решаем уравнение).

Х·4=60 (первый множитель неизвестен, второй множитель 4, произведение равно 60; чтобы найти первый множитель, надо произведение разделить на второй множитель или, чтобы найти неизвестный множитель, надо произведение разделить на известный множитель, решаем уравнение).

Х:10=8 (делимое неизвестно, делитель 10, частное равно 8; чтобы найти делимое, надо частное умножить на делитель, решаем уравнение).

72:Х=6 (делимое 72, делитель неизвестен, частное равно 6; чтобы найти делитель, надо делимое разделить на частное, решаем уравнение).

Решение задач с объяснением.

При решении задач используются методы синтеза (разбор задачи от условия к главному вопросу) и анализа (разбор задачи от главного вопроса к условию). Наиболее эффективно идет работа над разбором задачи, когда применяются оба метода.

На школьной фотовыставке было представлено 35 цветных фотографий, а черно-белых на 25 фотографий больше. Сколько всего фотографий было на выставке?

Чтобы узнать, сколько всего фотографий было на выставке, мы должны знать, сколько было цветных фотографий и черно-белых. Сколько было цветных, мы знаем, а сколько черно-белых нет, но можем узнать. Зная, что цветных фотографий было 35, а черно-белых на 25 фотографий больше, мы можем узнать, сколько черно-белых фотографий было на выставке действием сложения (записываем 1.) 35+25=60(ф.)-черно-белых). Зная, что цветных фотографий было 35, а черно-белых 60, мы можем узнать, сколько всего фотографий было на выставке действием сложения (записываем

2.) 60+35=95(ф.). Мы ответили на главный вопрос задачи. Ответ: всего 95 фотографий было на выставке.

Чтение примеров разными способами.

20+6

— к 20 прибавить 6;

— 20 увеличить на 6;

— найти сумму чисел 20 и 6 (если не говорить слово чисел, то числительные склоняются – найти сумму двадцати и шести);

— первое слагаемое 20, второе слагаемое 6, найти сумму.

20-6

— из 20 вычесть 6;

— 20 уменьшить на 6;

— найти разность чисел 20 и 6 (если не говорить слово чисел, то числительные склоняются – найти разность двадцати и шести);

— уменьшаемое 20, вычитаемое 6, найти разность;

— на сколько 20 больше 6 или на сколько 6 меньше 20.

Подобным образом читаются примеры на умножение и деление.

70-30·5

— из числа 70 (из семидесяти) вычесть произведение чисел 30 и 5 (тридцати и пяти);

— уменьшаемое 70, вычитаемое выражено произведением чисел 30 и 5 (тридцати и пяти);

(50+30):5

— сумму чисел 50 и 30 (пятидесяти и тридцати) разделить на 5;

— сумму чисел 50 и 30 (пятидесяти и тридцати) уменьшить в 5 раз;

— делимое выражено суммой чисел 50 и 30, делитель 5.

52:3+45·2

— к частному чисел 52 и 3(пятидесяти двух и трех) прибавить произведение чисел 45 и 2 (сорока пяти и двух);

— первое слагаемое выражено частным чисел 52 и 3, второе слагаемое выражено произведением чисел 45 и 2.

Скачать:

Вложение Размер
razvitie_rechi_na_urokakh_matematiki.docx 23.38 КБ

Предварительный просмотр:

Развитие речи на уроках математики

учитель высшей категории, ГБОУ СОШ №390 Санкт-Петербурга

Развитие речи для учащихся начальной школы, а особенно для детей речевых классов, является решающим фактором успешного усвоения программного материала по всем предметам, так как наряду с развитием речи развиваются образное и логическое мышление, память, внимание.

Хочу поделиться опытом работы по развитию речи детей на уроках математики. Наиболее значимая и трудоемкая работа в этом направлении проводится при чтении примеров разными способами, объяснении решения задач и уравнений, разборе многозначных чисел. Для этого учащиеся должны знать наизусть все правила, которые напечатаны в учебнике, названия и обозначения арифметических действий, названия компонентов и результата каждого действия, связь между компонентами и результатом каждого действия; названия и последовательность чисел в натуральном ряду (с какого числа начинается этот ряд и как образуется каждое следующее число в этом ряду); как образуется каждая следующая счетная единица (сколько единиц в одном десятке, сколько десятков в одной сотне и т. д., сколько разрядов содержится в каждом классе), названия и последовательность классов.

Приведу примеры такого вида работ.

Составление рассказа про число по плану (например, число 748):

  1. Прочитай число ( семьсот сорок восемь ).
  2. Какое оно по количеству знаков, по четности ( это трехзначное число, четное ).
  3. Какое место занимает в числовом ряду ( в числовом ряду стоит после числа 746 и перед числом 749).
  4. Сколько единиц каждого разряда в нем содержится ( в этом числе 8 единиц I разряда, 4 единицы II разряда и 7 единиц III разряда ).
  5. Сколько в нем содержится отдельных единиц, десятков, сотен и т. д. ( в нем содержится отдельных 8 единиц, 4 десятка, 7 сотен ).
  6. Сколько в нем содержится всего единиц, десятков, сотен и т. д. ( в нем содержится всего 748 единиц, 74 десятка, 7 сотен ).
  7. Представить число в виде суммы разрядных слагаемых ( число можно представить в виде суммы разрядных слагаемых 700+40+8 ).

Таким образом, зная план, дети составляют рассказ о любом числе.

Решение уравнений с объяснением.

  1. Вспомнить название чисел при сложении. Прочитать уравнение ( первое слагаемое неизвестно, второе слагаемое 23, сумма равна 70 ).
  2. Рассказать правило нахождения неизвестного числа ( чтобы найти первое слагаемое, надо из суммы вычесть второе слагаемое или, чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое ).
  3. Решаем уравнение

Х-15=30 ( уменьшаемое неизвестно, вычитаемое 15, разность равна 30; чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое, решаем уравнение ).

50-Х=12 ( уменьшаемое 50, вычитаемое неизвестно, разность равна 12; чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность, решаем уравнение ).

Х·4=60 ( первый множитель неизвестен, второй множитель 4, произведение равно 60; чтобы найти первый множитель, надо произведение разделить на второй множитель или, чтобы найти неизвестный множитель, надо произведение разделить на известный множитель, решаем уравнение ).

Х:10=8 ( делимое неизвестно, делитель 10, частное равно 8; чтобы найти делимое, надо частное умножить на делитель, решаем уравнение ).

72:Х=6 ( делимое 72, делитель неизвестен, частное равно 6; чтобы найти делитель, надо делимое разделить на частное, решаем уравнение).

Решение задач с объяснением.

При решении задач используются методы синтеза (разбор задачи от условия к главному вопросу) и анализа (разбор задачи от главного вопроса к условию). Наиболее эффективно идет работа над разбором задачи, когда применяются оба метода.

На школьной фотовыставке было представлено 35 цветных фотографий, а черно-белых на 25 фотографий больше. Сколько всего фотографий было на выставке?

Чтобы узнать, сколько всего фотографий было на выставке, мы должны знать, сколько было цветных фотографий и черно-белых. Сколько было цветных, мы знаем, а сколько черно-белых нет, но можем узнать. Зная, что цветных фотографий было 35, а черно-белых на 25 фотографий больше, мы можем узнать, сколько черно-белых фотографий было на выставке действием сложения (записываем 1.) 35+25=60(ф.)-черно-белых). Зная, что цветных фотографий было 35, а черно-белых 60, мы можем узнать, сколько всего фотографий было на выставке действием сложения (записываем

2.) 60+35=95(ф.). Мы ответили на главный вопрос задачи. Ответ: всего 95 фотографий было на выставке.

Чтение примеров разными способами.

— к 20 прибавить 6;

— 20 увеличить на 6;

— найти сумму чисел 20 и 6 (если не говорить слово чисел , то числительные склоняются – найти сумму двадцати и шести );

— первое слагаемое 20, второе слагаемое 6, найти сумму.

— из 20 вычесть 6;

— 20 уменьшить на 6;

— найти разность чисел 20 и 6 ( если не говорить слово чисел , то числительные склоняются – найти разность двадцати и шести );

— уменьшаемое 20, вычитаемое 6, найти разность;

— на сколько 20 больше 6 или на сколько 6 меньше 20.

Подобным образом читаются примеры на умножение и деление.

— из числа 70 (из семидесяти) вычесть произведение чисел 30 и 5 (тридцати и пяти);

— уменьшаемое 70, вычитаемое выражено произведением чисел 30 и 5 (тридцати и пяти);

— сумму чисел 50 и 30 (пятидесяти и тридцати) разделить на 5;

— сумму чисел 50 и 30 (пятидесяти и тридцати) уменьшить в 5 раз;

— делимое выражено суммой чисел 50 и 30, делитель 5.

— к частному чисел 52 и 3(пятидесяти двух и трех) прибавить произведение чисел 45 и 2 (сорока пяти и двух);

— первое слагаемое выражено частным чисел 52 и 3, второе слагаемое выражено произведением чисел 45 и 2.

Источник

Читайте также:  Мясо варено копченое холодным способом
Оцените статью
Разные способы