Различные способы сравнения чисел

Сравнение натуральных чисел: равно или не равно, больше или меньше?

Сравнение натуральных чисел между собой – тема данной статьи. Разберем сравнение двух натуральных чисел и изучим понятие равных и неравных натуральных чисел. Выясним большие и меньшие из двух чисел на примерах. Поговорим о натуральном ряде чисел и об их сравнении. Будут показаны результаты сравнений трех и более чисел.

Сравнение натуральных чисел

Рассмотрим это на примере. Когда на дереве имеется стая, состоящая из 7 птиц, а на другом из 5 десятка птиц, то стаи считаются разными, так как не похожи друг на друга. Отсюда можно делать вывод о том, что эта непохожесть и есть сравнение.

При сравнении натуральных чисел проводится такая проверка на похожесть.

Если считать, что под сравнением натуральных чисел подразумевают действие, то оно может привести к нескольким результатам:

  • Равенство. Этот случай возможен, когда числа равны.
  • Неравенство. Когда числа не равны.

Когда получаем неравенство, это значит, что одно из этих чисел больше или меньше другого, что и увеличивает диапазон использования натуральных чисел.

Рассмотрим определения равных и неравных чисел. Разберем, каким образом это определяется.

Равные и неравные натуральные числа

Рассмотрим определение равных и неравных чисел.

В случае, когда записи двух натуральных чисел одинаковы, их считают равными между собой. Когда записи имеют различия, тогда эти числа неравные.

Исходя из определения, числа 402 и 402 считаются равными, также как и 7 и 7 , так как они одинаково записываются. Но такие числа, как 55283 и 505283 не равны, так как записи их не одинаковы и имеют различия, 582 и 285 разные, так как по записи отличаются.

Такие равенства имеют краткую запись. Знак равно « = » и знак неравно « ≠ ». Их расположение непосредственно между числами, например, 47 = 47 . Означает, что эти числа равные. Или 56 ≠ 65 . Это значит, что числа разные и отличаются по записи.

В записи, которая имеет два натуральных числа со знаком « = » называют равенством. Они бывают верными или неверными. Например, 45 = 45 , что считается верным равенством. Если 465 = 455 , что считается неверным равенством.

Сравнение однозначных натуральных чисел

Однозначными числами считают ряд от 1 до 9 . Из двух записанных однозначных чисел меньше считается то, которое левее, а больше то, которое правее.

Числа могут быть одновременно больше или меньше нескольких. Например, если 1 меньше 2 , то и меньше 8 , а 5 меньше всех чисел, начиная от 6 . Это относится к каждому числу данного ряда от 1 до 9 .

Краткая запись знака меньше – « », а знака больше – « > ». Их расположение между двумя сравниваемыми числами. Когда имеется запись, где 3 > 1 , это означает, что 3 больше единицы, если запись имеет вид 6 9 , тогда 6 меньше 9 .

Если в записи имеются два натуральных числа со знаками « » и « > », тогда она называется неравенством. Неравенства могут быть верными и неверными.

Запись 4 7 – верная, а 3 > 9 – неверная.

Сравнение однозначного и многозначного натуральных чисел

Если принять за правило, что все однозначные числа меньше двухзначных, тогда получим:

5 10 , 6 42 , 303 > 3 , 32043 > 7 . Эта запись считается верной. Вот пример неверной записи неравенства: 3 > 11 , 733 5 и 2 > 1 020 .

Рассмотрим сравнения многозначных чисел.

Читайте также:  Способы образования форм превосходной степени

Сравнение многозначных натуральных чисел

Рассмотрим сравнение двух неравных многозначных натуральных чисел с равным количеством знаков. Предварительно следует повторить раздел, изучающий разряды натурального числа и значение разряда.

В таком случае производится поразрядное сравнение, то есть слева направо. Меньшим считается число, которое имеет меньшее значение соответствующего разряда и наоборот.

Чтобы решить пример, нужно уяснить, что 0 всегда меньше любого натурального числа и что он равен самому себе. Число ноль относится к разряду натуральных чисел.

Произвести сравнение чисел 35 и 63 .

Визуально видно, что числа неравные, так как по записи они отличаются. Для начала сравним десятки данного числа. Видно, что 3 6 , а это означает, что заданные числа 35 и 63 не равны, а первое число меньше второго. Это решение записывается так: 35 63 .

Ответ: 35 63 .

Произвести сравнение заданных чисел 301 и 308 .

Визуально очевидно, что числа не равны, так как их запись отличается. Они оба трехзначные, это значит, что сравнение необходимо начинать с сотен, после чего десяток и потом единиц. Получим, что 3 = 3 , далее 0 = 0 . Единицы отличаются друг от друга, имеем: 1 8 . Отсюда имеем, что 301 308 .

Ответ: 301 308 .

Сравнение многозначных натуральных чисел производится по-другому. Большим числом считают то, которое имеет меньшее количество знаков и наоборот.

Произвести сравнение заданных натуральных чисел 40391 и 92248712 .

Визуально заметим, что число 40391 имеет 5 знаков, а 92248712 – 8 .

Это значит, что количество знаков, равное 5 , меньше 8 . Отсюда имеем, что первое число меньше второго.

Ответ: 40 391 92 248 712 .

Выявить большее натуральное число из заданных: 50 933 387 или 10 000 011 348 ?

Заметим, что первое число 50 933 387 имеет 8 знаков, а второе 10 000 011 348 – 11 . Отсюда следует, что 8 меньше 11 . Значит, число 50 933 387 меньше 10 000 011 348 .

Ответ: 10000011348 > 50933387 .

Произвести сравнение многозначных натуральных заданных чисел: 9 876 545 678 и 987 654 567 811 .

Решение

Рассмотрим, что первое число имеет 10 знаков, второе – 12 . Делаем вывод, что второе число больше первого, так как 10 меньше 12 . Сравнение 10 и 12 выполняется поразрядно. Получаем, что 1 = 1 , но 0 меньше 2 . Отсюда получаем, что 0 2 . Это говорит о том, что 10 12 .

Ответ: 9 876 545 678 987 654 567 811 .

Натуральный ряд чисел, нумерация, счет

Произведем запись натуральных чисел так, чтобы последующее было больше предыдущего. Запишем этот ряд: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Эта последовательность имеет продолжение с двузначными числами: 1 , 2 , . . , 10 , 11 , . . , 99 . Ряд с трехзначными числами имеет вид 1 , 2 , . . , 10 , 11 , . . , 99 , 100 , 101 , . . , 999 .

Эта запись продолжается до бесконечности. Такая бесконечная последовательность чисел называется натуральным рядом чисел.

Существует еще один процесс – счет. Во время счета числа называются одно за другим, то есть таким образом, как они зафиксированы по ряду. Данный процесс применим для определения количества предметов.

Исли имеется определенное число предметов, но нам необходимо узнать количество, используем счет. Он производится, начиная с единицы. Если во время пересчета перекладывать предметы в кучу, то ее можно назвать натуральным рядом чисел. Последний предмет будет являться числом их количества. Когда процесс закончен, мы знаем их число, то есть предметы пересчитаны.

Во время счета меньше то натурально число, которое находится раньше и называется раньше. Применение нумерации используется для конкретного определения предмета, то есть присваивая ему определенный номер. Например, имеем некоторое количество предметов. На каждом из них зафиксируем их порядковый номер. Таким образом производится нумерация. Она применима для различения одинаковых предметов.

Натуральные числа на координатном луче

Для начала необходимо повторить определение координатного луча.

При просмотре слева направо видим штрихи, которые означают определенную последовательность чисел, начиная от 0 и до бесконечности. Эти штрихи называют точками. Точки, расположенные левее меньше точек, расположенных правее. Отсюда следует, что точка, имеющая меньшую координату на координатном луче, расположена левее точки с большей координатой.

Читайте также:  Расстояние от точки до прямой способом замены плоскостей

Рассмотрим на примере двух чисел 2 и 6 . Поставим две точки А и В на координатном луче, располагая на значениях 2 и 6 .

Отсюда следует, что точка А находится левее, а, значит, что она меньше точки В , так как расположение точки В правее точки А . Запишем в виде неравенства: 2 6 . Иначе можно озвучить, как «точка В лежит правее точки А , значит число 6 на координатном луче больше числа 2 ».

Наименьшее и наибольшее натуральное число

Считается, что 1 – это наименьшее натуральное число из множества всех натуральных чисел. Все числа, расположенные правее него считаются больше предыдущего. Этот ряд бесконечен, поэтому нет наибольшего числа из этого множества чисел.

Мы можем выделить наибольшее число из ряда однозначных натуральных чисел. Оно равно 9 . Это легко сделать, так как количество однозначных чисел ограничено. Аналогично находим большее число из множества двузначных чисел. Оно равняется 99 . Таким же образом выполняется поиск большего числа трехзначных и так далее чисел.

При сравнении пары чисел заметим, что возможен поиск меньшего и большего числа. Если 4 – число наименьшее, тогда 40 – наибольшее из заданного ряда: 4 , 6 , 34 , 34 , 67 , 18 , 40 .

Двойные, тройные неравенства

Известно, что 5 12 , а 12 35 . Два неравенства можно представить в виде одного двойного. Такая запись имеет вид: 5 12 35 . Отсюда видно, что при записи двойного неравенства получаем три неравенства, которые запишем 5 12 , 12 35 и 5 35 .

Запись в виде двойного неравенства применима для сравнения и трех чисел. Когда необходимо произвести сравнение 76 , 512 и 10 , мы получаем три неравенства 76 512 , 76 > 10 , 512 > 10 . Их, в свою очередь, можно записать как одно, но двойное 10 76 512 .

Таким же образом выполняются тройные, четверные и так далее неравенства.

Если известно, что 5 16 , 16 305 , 305 1 001 , 1 001 3 214 , тогда запись может быть представлена в виде 5 16 305 1 001 3 214 .

Необходимо быть внимательным при составлении двойных неравенств, так как можно произвести его неверно, что повлечет за собой неправильное решение задачи.

Источник

Сравнение натуральных чисел

Сравнить два числа — это значит определить, равны они или нет, если нет, то определить, какое из них больше, а какое — меньше.

Равные и неравные натуральные числа

Если записи двух натуральных чисел одинаковы, то говорят, что эти числа равны между собой. Числа, которые равны, называются равными. Если записи двух натуральных чисел отличаются, то говорят, что эти числа не равны. Числа, которые не равны, называются неравными.

Пример. Натуральное число 34 равно числу 34 (их записи одинаковы), а натуральные числа 63 и 67 не равны (их записи различны). Следовательно числа 34 и 34 — равные, а 63 и 67 — неравные.

Равенства и неравенства

Для записи результата сравнения чисел используются следующие знаки:

=, > и = называется знаком равенства и заменяет собой слово равно или равняется . Например, если числа a и b равны, то пишут a = b и говорят: a равно b .

Запись, которая состоит из математических выражений, между которыми ставится знак = называется равенством.

4 = 4 — равенство.

2 + 3 = 5 — равенство.

2 + 2 = 1 + 1 + 2 — равенство (подобные записи представляют собой равенство двух числовых выражений, и означают равенство значений этих выражений).

Равенства могут быть как верными (например, 5 = 5 — верное равенство), так и неверными (например, 11 = 14 — неверное равенство).

Два других знака > и называются знаками неравенства и означают: знак > — больше , а знак — меньше . Например, если число a больше числа b, то пишут a > b и говорят: a больше b или пишут b b меньше a .

Знаки > и должны быть обращены остриём к меньшему числу.

Читайте также:  Бальзам ополаскиватель способы применения

Запись, которая состоит из математических выражений, между которыми ставится знак > или называется неравенством.

5 > 4 — неравенство.

2 8 — неверное неравенство).

Кроме неравенств со знаками > и , которые называются строгими, используются нестрогие неравенства, для которых введены знаки ⩾ и ⩽ . Знак ⩾ читается больше или равно , знак ⩽ — меньше или равно . Нестрогое неравенство допускает случай равенства левой и правой его частей. Так, например, 7 ⩽ 7 — верное неравенство.

Также для записи неравенства двух натуральных чисел может применяться знак ≠ . Знак ≠ читается не равно . Например, запись ab — означает a не равно b.

Обычно, если не оговорено иное, понятие неравенства относится только к записям со знаками > , , ⩾ и ⩽ .

Правила чтения равенств и неравенств

Равенства и неравенства читаются слева направо. Левая часть равенства читается в именительном падеже, а правая — в дательном.

Пример. 7 = 7 — семь равно семи.

Левая часть неравенства читается в именительном падеже, а правая — в родительном.

Пример. 11 > 9 — одиннадцать больше девяти, 3 Пример. Сравним числа 1 и 3, 7 и 4. Запишем все однозначные натуральные числа в одной строке в следующем порядке:

1, 2, 3, 4, 5, 6, 7, 8, 9.

Число 1 меньше числа 3 (1 4), так как в натуральном ряду число 7 находится правее числа 4.

Для применения правил сравнения чисел по их десятичной записи необходимо принять одну условность: будем считать, что число 0 меньше любого натурального числа, и что нуль равен нулю.

Правила сравнения натуральных чисел по их десятичной записи:

Если записи сравниваемых чисел состоят из одинакового количества цифр, то числа сравниваются поразрядно слева направо. Большим будет считаться то число, у которого первая (слева направо) из неодинаковых цифр больше.

Когда говорят, что цифры равны (или одна цифра больше другой), то имеют ввиду, что соответствующие им числа равны (или одно число больше другого).

Пример. Сравним натуральные числа 4026 и 4019. Для удобства сравнения можно записать их одно под другим:

Сначала сравниваем значения разряда тысяч. Получаем равенство 4 = 4, поэтому переходим к сравнению значений следующего разряда. Опять получаем равенство 0 = 0, переходим к сравнению значений разряда десятков. Теперь имеем неравенство 2 > 1, из которого делаем вывод, что число 4026 больше числа 4019 (4026 > 4019), потому что у первого числа, цифра разряда десятков (2) больше, чем цифра разряда десятков (1) у второго числа.

Если количество цифр в записи сравниваемых чисел разное, то большим будет считаться то число, у которого количество цифр больше.

Пример. Сравним натуральные числа 347 503 и 34 503. Для удобства сравнения можно записать их одно под другим:

347 503
34 503

Записав числа одно под другим, можно наглядно заметить, что первое число имеет большее количество цифр, чем второе, следовательно 347 503 > 34 503.

Два натуральных числа равны, если у них одинаковое количество цифр и цифры одинаковых разрядов равны.

Пример. Сравним числа 38 526 734 и 38 526 734. Для удобства сравнения можно записать их одно под другим:

38 526 734
38 526 734

Записи данных чисел одинаковы (количество цифр и цифры одинаковых разрядов равны), следовательно эти числа равны.

Двойные неравенства, тройные неравенства и т. д.

Когда нужно записать, что одно число больше другого, но меньше третьего, часто используют двойные неравенства.

Пример. Известно, что 4 четыре больше двух, но меньше пяти .

В виде двойного неравенства можно записывать результат сравнения трёх натуральных чисел.

Пример. Допустим, нужно сравнить три натуральных числа 11, 34 и 8. Сравнивая данные числа между собой, получим три неравенства 11 8, которые можно записать как двойное неравенство:

8 Пример. Известно, что 12 15, 47 Сравнить .

Источник

Оцените статью
Разные способы