Различные способы получения водорода

Технологии получения Н2

Существует несколько способов получения водородной воды, включая электролиз (например, ионизаторы воды или специальные водородные генераторы), химическая реакция щелочными металлами и воды (например, алюминий, магний) или просто барботирование газообразного H2 в воду.

ЭЛЕКТРОЛИЗ

На рынке существует множество приборов и устройств, способных изменять химические и физические показатели воды при помощи электрического тока. Современные технологии научилась определять какие именно показатели воды имеют полезные и терапевтические свойства.

В настоящее время для производства водородной воды используется 2 метода электролиза, это электрические системы, которые воздействуют электрическим током через минеральные соли в воде, а именно, ионизаторы щелочной воды и генераторы водородной воды с нейтральным рН.

ИОНИЗАТОРЫ ВОДЫ

Ионизатором воды является любое устройство или изделие, которое увеличивает концентрацию заряженных частиц — ионов и свободных электронов. В данном методе образуется щелочная среда с насыщением водорода на катоде и кислая среда с насыщением кислорода на аноде, где анод и катод разделены барьером.

Приборы ионизации воды существуют очень давно и в настоящее время ежегодно появляются новые приборы и изделия для изменения свойств воды.

Что такое ионизация воды?

Под ионом подразумевается электрически заряженная частица (положительная или отрицательная) в виде атома или молекулы, которые образовываются при присоединении или потери электронов. Поэтому любое устройство, которое увеличивает концентрацию ионов является ионизатором воды.

После научного открытия ионизации воды путем электролиза М.Фарадея были обнаружены и другие возможности ионизации воды. Процесс ионизации можно получить несколькими способами, но его эффективность и себестоимость будет существенно отличаться.

Важно обратить внимание на то, что ионизаторы щелочной воды были разработаны до того, как стало известно о терапевтических свойствах Н2. Таким образом, эти устройства были оптимизированы для щелочного pH, а не для высокой концентрации растворенного водорода.

Только после 2007 года ученые обнаружили, что терапевтическое свойство в щелочной ионизированной воде представляет собой газообразный водород Н2. Поэтому для терапевтического эффекта важна концентрация Н2 в воде.

Важно также отметить, что, хотя некоторые ионизаторы воды могут создавать очень высокую концентрацию Н2 за счет замедления потока воды, эта продуцируемая вода часто имеет очень высокий уровень рН, что может сделать воду неприемлемой. В этом случае легко снизить pH путем добавления нескольких капель лимонного сока (лимонной кислоты) для снижения рН при сохранении более высокого уровня, растворенного Н2.

ГЕНЕРАТОРЫ ВОДОРОДНОЙ ВОДЫ

Генераторы водорода изначально разработаны для производства водорода, где конструкция, электроды и поток воды сделаны для получения высокой концентрации Н2. Однако прогресс не стоит на месте и недавно появились современные протонообменные мембраны (PEM) на основе твердого полимерного электролита (SPE).

Протонообменная мембрана, это прорыв в электролизе воды, которая позволяет получить более высокую концентрацию чистого Н2 с отделением побочных продуктов электролиза кислорода (О2), озона (О3), и хлора (Cl2).

Как происходит электролиз в SPE/PEM мембране?

Вода проникает через поры мембраны в анодное пространство. На границе анода и мембраны происходит электроокисление воды с выделением кислорода:

2H2O + 4e» —► O2 + 4H+

Непроницаемость PEM мембраны для кислорода препятствует его проникновению в катодное пространство и образованию взрывоопасной гремучей смеси кислорода и водорода. В итоге, кислород удаляется из реакционной зоны.

Далее протоны Н+ движутся через мембрану к катоду, где происходит их восстановление с электронами с выделением газообразного водорода:

Протекание катодной и анодной реакций стимулируется введением на границе раздела электродов и полимерных катализаторов — мелкодисперсных платины и оксида иридия, что делает процесс электролиза более эффективным.

В результате вы получаете воду с высокой концентрацией чистого Н2 (более 1,2 мг/л всего за 5 мин) без примесей продуктов распада электролиза и ОВП до -500 мВ.

ОТЛИЧИЯ ОБЫЧНОГО ЭЛЕКТРОЛИЗА ОТ СОВРЕМЕННЫХ ПОЛИМЕРНЫХ МЕМБРАН

Современные полимерные мембраны SPE/PME сами являются электролитом, поэтому им не требуется вода с содержанием минералов для проводимости тока, в связи с чем они имеют огромное технологическое преимущество, долгий срок службы и способны производить высокую концентрацию чистого Н2.

Благодаря более низкому электрическому сопротивлению между анодом и катодом в полимерной мембране происходит меньшее падение напряжения и более эффективный электролитический выход H2. Увеличение срока службы мембраны связано с тем, что рН питьевой воды практически не меняется, соответственно не происходит образования минерального налета на электродах.

Читайте также:  Способы обращения с радиоактивными отходами

Почему это важно, что в приборе есть протонобменная мембрана/ Твердый полимерный электролит?

Вода в приборе не является электролитом, электролиз идет внутри мембраны, вода только насыщается чистым водородом. Рекомендуется использовать дистиллированную воду или воду обратного осмоса. Это позволяет долгое время сохранять работоспособность мембраны, без необходимости в промывках.

Бывают ли приборы, разделяющие при электролизе водород и кислород, но без протонобменной мембраны?

Да, даже самые в первых приборах для электролиза в виде U образной трубки водород и кислород получались отдельно. Но электролитом в них является раствор солей в воде и помимо водорода и кислорода будут выделяться другие соединения. Бывают также приборы с мембраной, отделяющей водород, но при этом мембрана не является твердым полимерным электролитом. Эти приборы требуют использования воды с солями, поэтому мембрана засоряется и требует частых промывок. Узнайте, может ли прибор работать с дистиллированной водой, чтобы понять используется ли в нем SPE/PEM мембрана.

ХИМИЧЕСКАЯ РЕАКЦИЯ МЕТАЛЛОВ С ВОДОЙ

Другой простой и удобный способ получения воды, насыщенной Н2 заключается на химической реакции щелочноземельных металлов и воды. Например, хорошо известно, что добавление металлического натрия или калия к воде приводит к огненному взрыву.

Обратите внимание, что это металлическая форма натрия, а не ионная соль (т.е. металлический натрий, а не хлорид натрия [Na+ Cl- ]). Причина, по которой происходит эта реакция, заключается в том, что металлы быстро отдают свой внешний валентный электрон воде, которая производит молекулярный водород и гидроксид натрия: (2Na + 2H2 O -> H 2 + 2NaOH). Полученный гидроксид натрия (NaOH) диссоциирует с образованием ионов натрия (Na+ ) и гидроксид-ионов (OH- ) в соответствии с: NaOH -> Na + + OH — . Эти металлы настолько бурно реагируют с водой, что выделяется достаточно тепла, чтобы воспламенить образовавшийся газообразный водород.

Самой безопасной химической реакцией металла с водой для получения Н2 является магний. Mg+2H2O->H2 +Mg(OH)2.

Гидроксид магния (Mg(OH-)2) диссоциирует на ионы магния (Mg2+) и гидроксид ионы (ОН-) в соответствии с равновесием:

Есть магниевые палочки, которые можно поместить в воду, таблетки магния, которые растворяются в воде, таблетки, которые можно употреблять (которые производят H2 в желудке), или устройства картриджного типа, которые можно поместить в воду, быстро производя 2-4 мг/кг. Концентрация LH 2 , а также фильтры для воды, содержащие залитую магниевую среду. Как и электролиз, все эти методы увеличивают pH воды, поскольку они снижают концентрацию ионов H +.

В нашем магазине Вы можете купить водородные таблетки «Шипучий магний Drink HRW» позволяют получать самые высокие концентрации растворенного водорода в воде (более 7,0мг/л) всего за 1 минуту.

ЩЕЛОЧНЫЕ АЛКАЛИНОВЫЕ СТЕРЖНИ НЕ ВЫДЕЛЯЮТ ВОДОРОД.

На рынке воды существует большое количество недорогих щелочных алкалиновых стержней либо минеральных солей (турмалин, шунгит, кремний, оксиды и соли Mg, K, Ca, Na,Fe). Алкалиновые стержни делают воду щелочной, за счет обмена ионами и не выделяют водород в достаточном количестве.

Такие изделия имеют более низкую стоимость, и они воздействуют только на кислотно-щелочной баланс организма, минимально влияя на свободные радикалы.

Важно! Обращайте внимание на состав изделия и названия минералов. Только металлический магний образует газообразный водород, который имеет терапевтический эффект!

БАРБОТИРОВАНИЕ

Еще одним из популярных методов обогащения воды газом Н2 является Барботирование.

Барботирование — это процесс пропускания газа или пара через слой жидкости. Газ продавливается через слой жидкости с помощью трубки с мелкими отверстиями.

Данный метод часто используется в промышленности и в быту, например насыщение кислородом аквариумов.

На качество насыщения воды водородом влияют следующие характеристики барботажа:

  1. Давление газа. Чем больше давление, тем лучше растворение.
  2. Размер пузырьков. Чем меньше размер, тем лучше растворяется.
  3. Время прохождения пузырьков через слой воды. Чем дольше пузыри находятся в воде, тем больше насыщение.
  4. Температура воды. В холодной воде растворение водорода происходит лучше.

Для уменьшения пузырьков используют специальные полимерные аэраторы, которые позволяют получить нано пузырьки, в результате насыщение воды водородом увеличится в разы.

Данный метод часто используется для водородных ванн и других больших емкостей с водой.

ВОДОРОДНАЯ ВОДА В ПРИРОДЕ

Известно, что в природе существует очень полезная вода. Например, из горных источников, а люди, живущие с ней рядом и постоянно употребляя ее, являются долгожителями.

Известный факт, что средняя продолжительность жизни мужчин и женщин на Северном Кавказе составляет 112 и 114 лет соответственно. В горных источниках присутствует «легкий водород» в питьевой воде и пониженное содержание кислорода в воздухе, что и является одними из главных источников долгожительства.

Польза такой воды обусловлена тем, что она проходит через земные минералы, в результате чего обогащается полезными свойствами. Эффективность такой воды имеет место только при употреблении ее из источника т.к. при длительном взаимодействии с атмосферным воздухом (10-12 часов) вода теряет свои целебные свойства.

Читайте также:  Лабораторный способ получения водорода реакция

ЦЕЛЕБНЫЕ ВОДОРОДНЫЕ ИСТОЧНИКИ В МИРЕ

На земле имеются, известные на весь мир, источники целебной воды, такие как Лурд во Франции, Норденау в Германии, Тлакота в Мексике и Надана в Индии.

Каждый год огромное количество людей с самыми разными заболеваниями приезжают к этим святым местам. Все они хотят испить целебной воды из святых источников, чтобы избавиться от своих заболеваний. Целебность этих источников подтверждена многими уникальными случаями.

Ученые стали изучать свойства этих вод и обнаружили единственное схожее свойство, делающее их уникальными – это большое содержание газообразного водорода. Концентрация Н2 в этих водах составляет 0,2 – 0,8 мг/л. Для сравнения, в обычной воде водородный показатель воды приблизительно равен 0,018 ppm. Поэтому такую воду стали называть – водородная вода.

Лурдская вода Франции

66 пациентов с неизлечимыми заболеваниями получили свидетельства об их выздоровлении. Концентрация водорода: 800ppb (0,8 мг/л)

Колодец Тлакота в Мексике

Он стал известен благодаря Magic Johnson, игроку NBA, о его СПИДе. Концентрация водорода: 200 ppb (0,2 мг/л)

Подземная вода рудника Норденауэр в Германии

Было зарегистрировано исцеления от рака крови и диабета. Концентрация водорода: 420 ppb (0,42 мг/л)

Колодец Наданы Индии

Это знаменитая достопримечательность для лечения кожных заболеваний, полиомиелита и т. д. Концентрация водорода: 180 ppb (0,18 мг/л)

Источник

Перспективы и недостатки водородной энергетики

Для хранения и выработки энергии от водорода используются топливные элементы. Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах 19 века. Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

В 1959 году Фрэнсис Т. Бэкон из Кембриджа добавил в водородный топливный элемент ионообменную мембрану для облегчения транспорта гидроксид-ионов. Изобретением Бэкона сразу заинтересовались правительство США и NASA, обновленный топливный элемент стал использоваться на космических аппаратах «Аполлон» в качестве главного источника энергии во время их полетов.

В отличие от кислорода водород практически не встречается на земле в чистом виде и поэтому извлекается из других соединений с помощью различных химических методов.

По этим способам его разделяют на цветовые градации.

Зеленый — производится из возобновляемых источников энергии методом электролиза воды. Все, что необходимо для этого: вода, электролизер и большое снабжение электроэнергией.

Голубой — производится из природного газа, а вредные отходы улавливаются для вторичного использования. Тем не менее идеально чистым этот метод не назовешь.

Розовый или красный — произведенный при помощи атомной энергии.

Серый — водород получают путем конверсии метана. При его производстве вредные отходы выбрасываются в атмосферу.

Коричневый — водород получают в результате газификации угля. Этот метод также после себя оставляет парниковые газы.

Еще существуют технологии получения биоводорода из мусора и этанола, но их доля чрезвычайно мала.

Себестоимость производства по видам водорода, доллар за килограмм

Зеленый 10
Голубой 2 $
Красный 2 $
Серый 2—2,5 $
Коричневый 2—2,5 $

Водородная энергетика

На переработку угля приходится 18% производства водорода, 4% обеспечивается за счет зеленого водорода и 78% — переработкой природного газа и нефти. Методы производства, основанные на ископаемом топливе, приводят к образованию 830 млн тонн выбросов CO2 каждый год, что равно выбросам Великобритании и Индонезии, вместе взятым. И тем не менее водород — это более чистая альтернатива традиционному топливу.

В мире три основных источника выбросов, способствующих потеплению климата: транспорт, производство электроэнергии и промышленность. Водород может использоваться во всех трех областях. При использовании в топливных элементах водородная энергия оставляет минимальные потери, а после использования в качестве побочного продукта остается только вода, из которой снова можно добывать водород.

Перспективы отрасли

Согласно докладу МЭА, к 2050 году мировой спрос на водород должен достичь 528 млн тонн — против 87 млн в 2020, — а его доля в мировом потреблении составит 18%, из них 10% будет приходиться на зеленый водород.

К 2050 году МЭА планирует снизить затраты на производство этого экологически чистого вида топлива до 2 $ за килограмм, что существенно ниже нынешних 10 $. Это произойдет благодаря развитию технологий ВИЭ и удешевлению производства энергии ветра и солнца.

В июне 2020 года Германия объявила о реализации национальной водородной стратегии с инвестициями в 7 млрд евро, чтобы стать лидером в этой области.

Япония, Франция, Южная Корея, Австралия, Нидерланды и Норвегия начали свой курс на водород раньше Германии, а Япония сделала это раньше всех — в декабре 2017 года.

Читайте также:  Со способом обеспечения чего тесно связан способ комплектования деталей

В июле 2020 года Минэнерго подготовило план развития в РФ водородной энергетики на период 2020—2024 годов. Производить водород собираются «Росатом», «Газпром» и «Новатэк». В дорожной карте предусмотрены следующие меры:

  • поддержка пилотных проектов по производству водорода;
  • стимулы для экспортеров и покупателей на внутреннем рынке;
  • первые водородные установки запустят в 2024 году на атомных электростанциях, объектах добычи газа и переработки ископаемых.

В 2021 году HydrogenOne Capital — первый в мире инвестиционный фонд, ориентированный на зеленый водород, заявил о листинге на Лондонской бирже. Фонд инвестирует в проекты мощностью 20—100 МВт с возможностью их расширения до 500 МВт.

Как сделать ремонт и не сойти с ума

Преимущества водородной энергетики

Высокая применимость. Электрификация транспорта поможет снизить выбросы в атмосферу, но авиацию, морские и грузовые перевозки на дальние расстояния трудно перевести на использование электроэнергии, потому что для этих секторов требуется топливо с высокой плотностью энергии. Зеленый водород может удовлетворить эти потребности. Например, Airbus представил концепции самолетов с водородным двигателем и надеется ввести его в эксплуатацию к 2035 году.

Nikola строит полуприцепы, работающие как на аккумуляторных батареях, так и на водороде. Компания заявляет, что ее топливные элементы могут работать при более низких температурах, чем батареи. И они легче, что делает их более практичными для грузовиков и другой тяжелой техники. Nikola также утверждает, что дальность хода такого грузовика составит 900 миль на баке с водородом. Для сравнения: у Tesla Semi с батарейным питанием, который может быть запущен в производство в конце этого года или в 2022 году, заявленная дальность — 200—300 миль.

Также свои аналогичные модели транспорта представили компании Toyota, Honda и BMW.

Время заправки электромобиля на топливных элементах в среднем составляет менее четырех минут. При этом в отличие от батарей они не нуждаются в перезарядке. Поскольку они могут работать независимо от сети, то могут использоваться как запасные генераторы электричества или тепла.

Важный элемент перехода на водород — его применение в ЖКХ. Кроме пилотных проектов в Великобритании Лидс станет первым городом, энергоснабжение которого будет полностью водородным. Согласно плану, все газовые сети и транспортное оборудование переведут на него.

Запасы водорода практически безграничны. Так как он встречается почти всюду, его можно использовать там, где он производится. В отличие от батарей, которые не могут хранить большое количество электроэнергии в течение продолжительного времени, водород можно производить из избыточной возобновляемой энергии и хранить в больших количествах.

Энергоэффективность. Водород содержит почти в три раза больше энергии, чем ископаемое топливо, поэтому для выполнения какой-либо работы его требуется гораздо меньше. Например, по сравнению с электростанцией, работающей на сжигании топлива с КПД от 33 до 35%, водородные топливные элементы выполнят ту же функцию с КПД до 65%. Для примера, у солнечных элементов КПД — 20%, а у ветряных — 40%.

Весной 2020 года в городе Фукусима была запущена самая крупная в мире электростанция, работающая на водороде. Для питания электролизных установок на ней размещены солнечные батареи общей мощностью 20 МВт. Всего станция вырабатывает 1,2 тысячи кубических метров водорода в час.

В автомобилях топливные элементы используют 40—60% энергии топлива, а также обеспечивают сокращение его расхода на 50%.

Зеленый водород — отличная среда для хранения энергии. Например, у Германии существует проблема с энергосистемой. В ясные и ветреные дни солнечные экраны и ветряные турбины на севере производят больше электроэнергии, чем может потребить эта часть страны. Из-за этого Германия вынуждена продавать излишки электроэнергии соседним странам себе в убыток. Избыток электроэнергии из ВИЭ можно хранить в виде водорода, а затем сжигать для выработки электроэнергии, когда это необходимо.

Недостатки водородной энергетики

Стоимость зеленого водорода. Как уже говорилось выше, именно стоимость добычи самого чистого вида водорода ставит наиболее сильные препятствия в его развитии. По словам и прогнозам Минэнерго РФ, перспективы водородной энергетики связаны с удешевлением стоимости водорода, производимого электролизом воды. В качестве основных факторов обеспечения конкурентоспособности зеленого водорода рассматривается перспективное снижение капитальных затрат на электролизеры, а также стоимости электроэнергии из ВИЭ.

При масштабировании производства электролизеров их стоимость может снизиться с текущих 1000 до 200 $/кВт к 2050 году, по оценке J. P. Morgan — даже до 100 $/кВт. При реализации такого сценария к 2050 году стоимость электролизеров может снизиться до уровня менее 2 $/кг. Но с учетом применения различных программ государственного субсидирования водородной энергетики эти сроки могут быть сокращены.

Источник

Оцените статью
Разные способы