- Определение функции
- Определение функции
- Сложные функции
- Действительные функции
- Максимум и минимум
- Верхняя и нижняя грани
- Монотонные функции
- Многозначные функции
- Сужение и продолжение функции
- Определение функции. Способы задания функции.
- Способы задания функции.
- Аналитический способ задания функции.
- Графический способ задания функции.
- Табличный способ задания функции.
- Что такое Функция?
- Понятие функции
Определение функции
Определение функции
Характеристика f обладает тем свойством, что если два элемента и из множества определения имеют равные значения: , то .
Символ, обозначающий характеристику, может совпадать с символом элемента значения функции. То есть можно записать так: . При этом стоит помнить, что y – это элемент из множества значений функции, а – это правило, по которому для элемента x ставится в соответствие элемент y .
Сам процесс вычисления функции состоит из трех шагов. На первом шаге мы выбираем элемент x из множества X . Далее, с помощью правила , элементу x ставится в соответствие элемент множества Y . На третьем шаге этот элемент присваивается переменной y .
Частным значением функции называют значение функции при выбранном (частном) значении ее аргумента.
Графиком функции f называется множество пар .
Сложные функции
В математическом анализе принято считать, что если характеристика функции обозначена одной буквой или символом, то она задает одно и то же соответствие. Однако, в других дисциплинах, встречается и другой способ обозначений, согласно которому отображения с одной характеристикой, но разными аргументами, считаются различными. То есть отображения и считаются различными. Приведем пример из физики. Допустим мы рассматриваем зависимость импульса от координаты . И пусть мы имеем зависимость координаты от времени . Тогда зависимость импульса от времени является сложной функцией . Но ее, для краткости, обозначают так: . При таком подходе и – это различные функции. При одинаковых значениях аргументов они могут давать различные значения. В математике такое обозначение не принято. Если требуется сокращение, то следует ввести новую характеристику. Например . Тогда явно видно, что и – это разные функции.
Действительные функции
Область определения функции и множество ее значений могут быть любыми множествами.
Например, числовые последовательности – это функции, областью определения которых является множество натуральных чисел, а множеством значений – вещественные или комплексные числа.
Векторное произведение тоже функция, поскольку для двух векторов и имеется только одно значение вектора . Здесь областью определения является множество всех возможных пар векторов . Множеством значений является множество всех векторов.
Логическое выражение является функцией. Ее область определения – это множество действительных чисел (или любое множество, в котором определена операция сравнения с элементом “0”). Множество значений состоит из двух элементов – “истина” и “ложь”.
В математическом анализе большую роль играют числовые функции.
Числовая функция – это функция, значениями которой являются действительные или комплексные числа.
Действительная или вещественная функция – это функция, значениями которой являются действительные числа.
Максимум и минимум
Действительные числа имеют операцию сравнения. Поэтому множество значений действительной функции может быть ограниченным и иметь наибольшее и наименьшее значения.
Ограниченная сверху (снизу) функция Действительная функция называется ограниченной сверху (снизу), если существует такое число M , что для всех выполняется неравенство:
. Ограниченная функция Числовая функция называется ограниченной, если существует такое число M , что для всех :
.
Максимумом M (минимумом m ) функции f , на некотором множестве X , называют значение функции при некотором значении ее аргумента , при котором для всех ,
.
Верхняя и нижняя грани
Таким образом, любая действительная функция, на не пустом множестве X , имеет верхнюю и нижнюю грани. Но не всякая функция имеет максимум и минимум.
В качестве примера рассмотрим функцию , заданную на открытом интервале .
Она ограничена, на этом интервале, сверху значением 1 и снизу – значением 0 :
для всех .
Эта функция имеет верхнюю и нижнюю грани:
.
Но она не имеет максимума и минимума.
Если мы рассмотрим туже функцию на отрезке , то она на этом множестве ограничена сверху и снизу, имеет верхнюю и нижнюю грани и имеет максимум и минимум:
для всех ;
;
.
Монотонные функции
Многозначные функции
Как следует из определения функции, каждому элементу x из области определения, ставится в соответствие только один элемент из множества значений. Но существуют такие отображения, в которых элемент x имеет несколько или бесконечное число образов.
В качестве примера рассмотрим функцию арксинус: . Она является обратной к функции синус и определяется из уравнения:
(1) .
При заданном значении независимой переменной x , принадлежащему интервалу , этому уравнению удовлетворяет бесконечно много значений y (см. рисунок).
Наложим на решения уравнения (1) ограничение. Пусть
(2) .
При таком условии, заданному значению , соответствует только одно решение уравнения (1). То есть соответствие, определяемое уравнением (1) при условии (2) является функцией.
Вместо условия (2) можно наложить любое другое условие вида:
(2.n) ,
где n – целое. В результате, для каждого значения n , мы получим свою функцию, отличную от других. Множество подобных функций является многозначной функцией. А функция, определяемая из (1) при условии (2.n) является ветвью многозначной функции.
Многозначная функция – это совокупность функций, определенных на некотором множестве.
Ветвь многозначной функции – это одна из функций, входящих в многозначную функцию.
Однозначная функция – это функция.
Сужение и продолжение функции
Выше мы указали, что если область определения функции синус, , сузить до отрезка , то полученная в результате новая функция будет строго монотонной на этом отрезке и иметь обратную функцию. Такая операция называется сужением функции. В результате ее применения получается новая функция, которая в данном примере обозначается так: .
Сужение функции Пусть функция определена на множестве X . И пусть множество M является его подмножеством: . Определим функцию так, чтобы ее областью определения было множество M . И пусть на этом множестве она принимает те же значения, что и функция :
.
Тогда функция называется сужением функции f на множество M . Сужение функции обозначают так:
, или . Продолжение функции Пусть функция определена на множестве X , а функция – на множестве M , которое является подмножеством X : . И пусть функция является сужением функции на множество M . Тогда функция называется продолжением функции g на множество X .
Выполнить операцию сужения функции на заданное множество можно только одним способом. А вот выполнить продолжение можно бесконечным числом способов. Особую роль продолжение играет в теории функций комплексного переменного. Там показывается, что если функция является аналитической (то есть имеет производную) на некотором множестве M , то существует только единственное ее аналитическое продолжение на множество X .
Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.
Автор: Олег Одинцов . Опубликовано: 10-04-2018 Изменено: 13-05-2021
Источник
Определение функции. Способы задания функции.
Что значить задать функцию? Какими способами можно задать функцию? Что такое определение функции?
Задать функцию — это значит указать правило, при задании любого значения аргумента x вы найдете значение функции y.
Функция y=f(x) – зависимость переменной y от переменной x. Когда задаем значение аргумента x, получаем единственное значение функции y.
Способы задания функции.
В данной статье рассмотрим 3 способа задания функции. На самом деле их больше, в школьной программе чаще всего разбирают эти способы задания функции.
Аналитический способ задания функции.
Чаще всего в школьной программе правило задают в виде формулы y=f(x), x∈X или нескольких формул. Такой способ задания функции называется аналитическим.
Примеры аналитического задания функции:
Графический способ задания функции.
Также если по формуле построить график функции, то данный способ задания функции будет называться графическим. Не всегда вам будут давать график совместно с формулой. Иногда вам в заданиях будут давать только график функции, по которому вы должны будете найти определенные данные. По графику функции можно восстановить его формулу, но это не всегда легко сделать, все зависит от начерченного графика. В школьной программе вам будут задавать графики, по которым вы сможете рассчитать формулу.
Примеры, графического задания функции:


Табличный способ задания функции.
Следующий способ задания функции применяется чаще всего на практике называется табличный.
Все данные представлены в виде таблице. У этого способа имеется конечное множество значений аргумента. Такими таблицами вы уже пользовались в алгебре, например, таблица квадратов, таблица корней и т.д.
Примеры, табличного задания функции:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 |
Рассмотрим примеры по теме «Способы задания функции»:
Пример №1:
Является ли графическим заданием какой-либо функции фигура?
Сколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.
Пример №2:
Является ли графическим заданием какой-либо функции фигура?
Сколько бы мы не проводили вертикальных линий, всегда будет одно пересечение с графиком. Следовательно, изображенная фигура является графиком функции.
Пример №3:
Является ли графическим заданием какой-либо функции фигура?
При проведении вертикальных линий у нас имеется два пересечения. То есть у одной вертикальной линии два пересечения с фигурой. По определению переменной x должно соответствовать только одно значение переменной y, а у нас два пересечения фигуры. Следовательно, данная фигура не является графиком функции.
Источник
Что такое Функция?
О чем эта статья:
7 класс, 11 класс, ЕГЭ/ОГЭ
Понятие функции
Определение функции можно сформулировать по-разному. Рассмотрим несколько вариантов, чтобы усвоить наверняка.
1. Функция — это взаимосвязь между величинами, то есть зависимость одной переменной величины от другой.
Знакомое обозначение y = f (x) как раз и выражает идею такой зависимости одной величины от другой. Величина у зависит от величины х по определенному закону, или правилу, которое обозначается f.
Вывод: меняя х (независимую переменную, или аргумент) — меняем значение у.
2. Функция — это определенное действие над переменной.
Значит, можно взять величину х, как-то над ней поколдовать — и получить соответствующую величину у.
В технической литературе можно встретить такие определения функции для устройств, в которых на вход подается х — на выходе получается у. Схематично это выглядит так:
В этом значении слово «функция» используют и в далеких от математики областях. Например, так говорят о функциях ноутбука, костей в организме или даже о функциях менеджера в компании. В каждом перечисленном случае речь идет именно о неких действиях.
3. Функция — это соответствие между двумя множествами, причем каждому элементу первого множества соответствует один элемент второго множества. Это самое популярное определение в учебниках по математике.
Например, в функции у = 2х каждому действительному числу х ставит в соответствие число в два раза большее, чем х.
Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.
Например, для функции вида
область определения выглядит так:
- х ≠ 0 (потому что на ноль делить нельзя)
И записать это можно так: D (y): х ≠ 0.
Область значений — множество у, то есть это значения, которые может принимать функция.
Например, естественная область значений функции y = x2 — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.
Для примера рассмотрим соответствие между двумя множествами — человек-владелец странички в инстаграм и сама страничка, у которой есть владелец. Такое соответствие можно назвать взаимно-однозначным — у человека есть страничка, и это можно проверить. И наоборот — по аккаунту в инстаграм можно проверить, кто им владеет.
В математике тоже есть такие взаимно-однозначные функции. Например, линейная функция у = 3х +2. Каждому значению х соответствует одно и только одно значение у. И наоборот — зная у, можно сразу найти х.
Источник