10 класс
Механика
В истории науки первой законченной физической теорией стала классическая механика. Её основы были заложены в книге «Математические начала натуральной философии» (1687) выдающимся английским учёным Исааком Ньютоном (1643—1727).
В современном понимании механика — наука о механическом движении тел и происходящих при этом взаимодействиях между ними. Предметом её изучения являются движения любых материальных тел (кроме элементарных частиц), которые происходят со скоростями, значительно меньшими скорости света.
К основным физическим величинам, характеризующим механическое движение, относятся перемещение, скорость, ускорение. Установление связей между ними позволяет определить положение тела в пространстве в любой момент времени. При изучении механических явлений и процессов и при решении многих задач механики применяют такие модели, как материальная точка, абсолютно твёрдое тело, идеальная несжимаемая жидкость.
Механика тесно связана с другими разделами физики. Ряд её понятий и методов (при соответствующих обобщениях) находит применение в электродинамике, оптике, квантовой механике, теории относительности и др. Огромное значение механика имеет и для многих направлений астрономии. Так, знание основных понятий, уравнений и методов механики широко используется для расчёта орбит искусственных спутников и межпланетных аппаратов. Значительную роль механика играет в конструировании автомобилей и других технических объектов, в проектировании и создании речных и морских судов, различных сооружений, зданий и механизмов.
Целостное представление об основных понятиях, законах, моделях и приложениях механики вы получите при изучении кинематики, динамики, законов сохранения в механике, статики, гидро- и аэростатики.
Глава 2. Кинематика
Раздел механики, в котором изучаются способы описания движений и связь между физическими величинами, характеризующими эти движения, называют кинематикой (от греч. kinematos — движение). При этом не рассматриваются причины изменения характера движений, т. е. не учитываются массы тел и действующие на них силы.
Основная задача кинематики состоит в определении положения тела в пространстве в любой момент времени в выбранной системе отсчёта.
Однако любое тело состоит из частей, которые занимают различные положения в пространстве. На первый взгляд, задача описания движения тела кажется очень сложной. Наиболее простой способ — это научиться описывать движение точки.
За точку можно принять очень маленький предмет — маленький по сравнению с тем расстоянием, которое он проходит (например, пуля, выпущенная из ружья). Конечно, использовать модель точки можно только при условии, когда размерами и формой тела можно пренебречь в условиях решаемой задачи. Например, когда мы говорим о расстоянии, пройденном автомобилем, нет необходимости учитывать размеры или движение его колёс.
§ 3. Различные способы описания механического движения
Прямолинейное движение тела.
Из курса физики основной школы известно, что
механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.
В случае прямолинейного движения тело в любые моменты времени остаётся на одной прямой. Будем считать, что прямая на рисунке 2.1 изображает шоссе, а точка А — автомобиль, движущийся по нему. Выберем точку начала отсчёта расстояний. Обозначим её буквой О, а расстояние OA от начала отсчёта до движущейся точки — буквой r (см. рис. 2.1).
Для того чтобы определить положение автомобиля на шоссе, нужно указать его расстояние от точки, принимаемой за начало отсчёта. Эту точку можно выбирать произвольно. Знание только расстояния г не позволит однозначно определить положение автомобиля А в пространстве, так как это расстояние можно отсчитать от точки О как вправо, так и влево. Поэтому следует воспользоваться осью координат, т. е. выбрать на прямой положительное направление, отметив его стрелкой. Тогда положение тела можно охарактеризовать одной координатой — числом, принимающим как положительные, так и отрицательные значения.
Система отсчёта.
Особо отметим, что во всех случаях можно говорить лишь о движении одного тела относительно другого (например, о движении автомобиля относительно земли).
Тело, относительно которого рассматривается движение, называют телом отсчёта.
C телом отсчёта принято связывать систему координат. В случае прямолинейного движения достаточно использовать одну координатную ось. Кроме того, нам ещё потребуются часы, так как движение тела происходит во времени.
Тело отсчёта, связанная с ним система координат (или координатная ось) и часы образуют систему отсчёта.
Различные способы описания механического движения.
Движение тела считается заданным (известным), если известны уравнения (или графики, таблицы), позволяющие определить положение данного тела относительно системы отсчёта в любой момент времени.
Рассмотрим табличный способ описания прямолинейного движения тела на следующем примере. Будем определять положения автомобиля на прямолинейном участке шоссе через равные промежутки (интервалы) времени, например через каждую минуту. За начальный момент времени можно принять показания часов, когда мы определяем положение автомобиля в первый раз. Выбор начала отсчёта времени является произвольным. Если отсчёт времени производится с помощью секундомера, то целесообразно включить его в момент начала движения автомобиля (t0 = 0). Результаты измерений координаты автомобиля в соответствующие моменты времени приведены в таблице 1.
Таблица 1
t, мин | х, м | t, мин | х, м |
0 | 0 | 7 | 2130 |
1 | 320 | 8 | 2250 |
2 | 1050 | 9 | 3130 |
3 | 1840 | 10 | 4130 |
4 | 2130 | 11 | 5130 |
5 | 2130 | 12 | 6130 |
6 | 2130 |
Перейдём к графическому способу описания движения. Графическое описание движения очень наглядно. Будем откладывать вдоль горизонтальной оси моменты времени, а вдоль вертикальной оси — соответствующие значения координат автомобиля. Соединив точки, каждая из которых соответствует координате автомобиля в определённый момент времени, получим график изменения координаты со временем (рис. 2.2).
График на этом рисунке содержит те же сведения о движении автомобиля, что и таблица 1. Приведённый график показывает, как меняется координата автомобиля с течением времени. Легко заметить, что получается довольно сложная кривая. Но это не означает, что автомобиль движется вдоль этой кривой, ведь его движение является прямолинейным.
Линию в пространстве, вдоль которой происходит движение тела в выбранной системе отсчёта, называют траекторией.
В рассмотренном случае траектория движения тела (автомобиля) — прямая линия. Если траектория представляет собой кривую линию, то такое движение называют криволинейным. На рисунке 2.3 приведены примеры траектории движения: а — прямолинейная; б — криволинейная.
Для тела, которое можно рассматривать как систему точек, расстояния между которыми не изменяются со временем, простейшими видами движения являются поступательное и вращательное.
Движение тела называют поступательным, если прямая, проведённая между двумя любыми его точками, остаётся параллельной самой себе.
Так, любые две точки (например, А и В) кабинки колеса обозрения (рис. 2.4, а) движутся так, что проходящая через них прямая AB всегда остаётся параллельной самой себе (рис. 2.4, б). Тем самым, кабинка движется поступательно.
Движение тела называют вращательным, если все его точки движутся по окружностям, центры которых лежат на одной прямой. Эту прямую называют осью вращения тела.
Вращательное движение совершают, например, колёса, валы двигателей и генераторов, пропеллеры самолётов.
Остановимся ещё на одном способе описания движения, называемом аналитическим. В каждый момент времени t координата х тела имеет определённое значение. C течением времени происходит изменение координаты. На математическом языке это означает, что координата х является функцией времени:
Вид этой функции в каждом конкретном случае будет вполне определённым.
Таким образом, существует три способа описания движения: табличный, графический и наиболее полный — аналитический, выражающий функциональную зависимость координаты от времени.
Вопросы:
1. Что изучает кинематика?
2. В чём заключается основная задача кинематики?
а) механическим движением;
б) телом отсчёта;
в) системой отсчёта?
4. В чём состоит:
в) аналитический способ описания движения?
Вопросы для обсуждения:
1. В безветренную погоду капли дождя падают вертикально. По какой траектории в этом случае будут стекать капли по стеклу автобуса, когда он находится на остановке? Изменится ли их траектория, если автобус будет двигаться?
2. Какие части велосипеда движутся поступательно при движении велосипедиста по горизонтальному участку дороги?
Это любопытно.
Из истории развития физики и техники
Попытки древних философов (прежде всего, Аристотеля) объяснить причины движения, в том числе механического, были плодом чистой фантазии. Подобно тому, рассуждали они, как утомлённый путник ускоряет шаги по мере приближения к дому, падающий камень начинает двигаться всё быстрее, приближаясь к матери-Земле.
Подлинное развитие науки о механическом движении началось с трудов Галилея.
Он открыл принцип относительности, ввёл понятие инерции, исследовал законы падения и движения тел по наклонной плоскости, предложил применять маятник для измерения времени. Галилей развил запрещённое в то время церковью учение Коперника о движении Земли вокруг Солнца, за что в 1633 г. был осуждён римским католическим судом. Приговор был отменён Ватиканом лишь в 1992 г. по инициативе папы римского Иоанна Павла II.
Галилей первым понял, что для исследования движения тел нужно научиться описывать их количественно (математически). При этом нельзя ограничиваться простым наблюдением за движущимися телами, нужно ставить заранее продуманные опыты и выражать их результаты на языке математики.
Источник
Различные способы описания движения тела
«Физика — 10 класс»
Какими величинами можно описать механическое движение тела?
Если тело можно считать точкой, то для описания его движения нужно научиться рассчитывать положение точки в любой момент времени относительно выбранного тела отсчёта.
Существует несколько способов описания, или, что одно и то же, задания движения точки. Рассмотрим два из них, которые наиболее часто применяются.
Координатный способ.
Будем задавать положение точки с помощью координат. Если точка движется, то её координаты изменяются с течением времени. Так как координаты точки зависят от времени, то можно сказать, что они являются функциями времени.
Математически это принято записывать в виде
Уравнения (1.1) называют кинематическими уравнениями движения точки, записанными в координатной форме.
Если уравнения движения известны, то для каждого момента времени мы сможем рассчитать координаты точки, а следовательно, и её положение относительно выбранного тела отсчёта. Вид уравнений для каждого конкретного движения будет вполне определённым.
Основной задачей кинематики является определение уравнения движения тел.
Количество выбираемых для описания движения координат зависит от условий задачи. Если движение точки происходит вдоль прямой, то достаточно одной координаты и, следовательно, одного уравнения, например, x(t). Если движение происходит на плоскости, то его можно описать двумя уравнениями — x(t) и y(t). Уравнения описывают движение точки в пространстве.
Векторный способ.
Положение точки можно задать, и с помощью радиус-вектора.
Радиус-вектор — это направленный отрезок, проведённый из начала координат в данную точку.
При движении материальной точки радиус-вектор, определяющий её положение, с течением времени изменяется (поворачивается и меняет длину), т. е. является функцией времени:
=
(t)
На рисунке радиус-вектор определяет положение точки в момент времени t1, а радиус-вектор
2 — в момент времени t2.
Вышеприведенная формула и есть уравнение движения точки, записанное в векторной форме.
Если оно известно, то мы можем для любого момента времени рассчитать радиус-вектор точки, а значит, определить её положение.
Задание трёх скалярных уравнений равносильно заданию одного векторного уравнения.
Итак, мы знаем, что положение точки в пространстве определяется её координатами или её радиус-вектором.
Модуль и направление любого вектора находят по его проекциям на оси координат. Чтобы понять, как это делается, вначале необходимо ответить на вопрос: что понимают под проекцией вектора на ось?
Изобразим ось ОХ. Опустим из начала А и конца В вектора перпендикуляры на ось ОХ. Точки А1 и В1 есть проекции соответственно начала и конца вектора
на эту ось.
Проекция вектора
Проекцией вектора на какую-либо ось называется длина отрезка А1В1 между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «—».
Проекцию вектора мы будем обозначать той же буквой, что и вектор, но, во-первых, без стрелки над ней и, во-вторых, с индексом внизу, указывающим, на какую ось проецируется вектор. Так, ах и ау — проекции вектора на оси координат ОХ и OY.
Согласно определению проекции вектора на ось можно записать:
Проекция вектора на ось представляет собой алгебраическую величину. Она выражается в тех же единицах, что и модуль вектора.
Условимся считать проекцию вектора на ось положительной, если от проекции начала вектора к проекции его конца надо идти в положительном направлении оси проекций.
В противном случае она считается отрицательной.
Проекция вектора на ось будет положительной, когда вектор составляет острый угол φ с направлением оси проекций, и отрицательной, когда вектор составляет с направлением оси проекции тупой угол φ.
Иногда нужно находить составляющие вектора, например векторы x, и
y.
Сумма составляющих равна вектору :
=
x +
y.
Источник: «Физика — 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Кинематика — Физика, учебник для 10 класса — Класс!ная физика
Источник