Различные способы геометрическая прогрессии

Геометрическая прогрессия: определение, формулы, свойства

Сумма членов геометрической прогрессии

b1 — первый член прогрессии,

q — знаменатель прогрессии,

Для нахождения суммы членов геометрической прогрессии вы можете воспользоваться нашим онлайн калькулятором. Просто введите данные и получите результат.

Знаменатель геометрической прогрессии

Знаменатель геометрической прогрессии можно вычислить с помощью текущего и следующего членов геометрической прогрессии по формуле:

Члены геометрической прогрессии

Общая формула для вычисления n-ого члена геометрической прогрессии по первому члену и знаменателю:

Следующий член геометрической прогрессии можно найти по предыдущему члену и знаменателю:

Предыдущий член геометрической прогрессии можно найти по следующему члену и знаменателю:

Также член геометрической прогрессии можно найти, если известны следующий и предыдущий члены:

Для чего нужна геометрическая прогрессия и ее история возникновения.

Еще в древности итальянский математик монах Леонардо из Пизы (более известный под именем Фибоначчи) занимался решением практических нужд торговли. Перед монахом стояла задача определить, с помощью какого наименьшего количества гирь можно взвесить товар? В своих трудах Фибоначчи доказывает, что оптимальной является такая система гирь: Это одна из первых ситуаций, в которой людям пришлось столкнуться с геометрической прогрессией, о которой ты уже наверное слышал и имеешь хотя бы общее понятие. Как только полностью разберешься в теме, подумай, почему такая система является оптимальной?

В настоящее время, в жизненной практике, геометрическая прогрессия проявляется при вложении денежных средств в банк, когда сумма процентов начисляется на сумму, скопившуюся на счете за предыдущий период. Иными словами, если положить деньги на срочный вклад в сберегательный банк, то через год вклад увеличится на от исходной суммы, т.е. новая сумма будет равна вкладу, умноженному на . Ещё через год уже эта сумма увеличится на , т.е. получившаяся в тот раз сумма вновь умножится на и так далее. Подобная ситуация описана в задачах на вычисление так называемых сложных процентов – процент берется каждый раз от суммы, которая есть на счете с учетом предыдущих процентов. Об этих задачах мы поговорим чуть позднее.

Читайте также:  Способы предсказать свою судьбу

Есть еще много простых случаев, где применяется геометрическая прогрессия. Например, распространение гриппа: один человек заразил человек, те в свою очередь заразили еще по человека, и таким образом вторая волна заражения – человек, а те в свою очередь, заразили еще

Общий вид геометрической прогрессии

  • q – знаменатель прогрессии; это и есть постоянный множитель.
  • b ≠ 0, q ≠ 0

Члены прогрессии:

Цифры 1,2,3… – это их порядковые номера, т.е. место, которое они занимают в последовательности.

Виды прогрессии:

Формула суммы n-первых членов геометрической прогрессии

Бесконечно убывающая геометрическая прогрессия — это прогрессия, у которой |q| , называется геометрической прогрессией. Число , называется геометрической прогрессией. Число называется знаменателем прогрессии.

То есть геометрическая прогрессия определяется рекуррентным соотношением

Примеры геометрических прогрессий.

  1. Последовательность — геометрическая прогрессия со знаменателем — геометрическая прогрессия со знаменателем
  2. Последовательность — геометрическая прогрессия со знаменателем — геометрическая прогрессия со знаменателем
  3. Последовательность — геометрическая прогрессия со знаменателем — геометрическая прогрессия со знаменателем

Теорема 1. Пусть — геометрическая прогрессия со знаменателем — геометрическая прогрессия со знаменателем Тогда для всех натуральных справедлива формула

Доказательство. Воспользуемся рекуррентным определением геометрической прогрессии:

Итак, для n-го члена геометрической прогрессии справедлива формула

Теорема 2. Квадрат любого члена геометрической прогрессии, начиная со второго, равен произведению предыдущего и последующего членов:

Доказательство. Из определения геометрической прогрессии

Обратное утверждение тоже верно. Если для всех членов последовательности начиная со второго, выполняется равенство начиная со второго, выполняется равенство то эта последовательность — геометрическая прогрессия.

Пример 1. Сумма первого и третьего членов геометрической прогрессии равна 10, а сумма второго и четвёртого членов — 30. Найдём первый член и знаменатель прогрессии.

Решение. По условию

Выразим члены геометрической прогрессии через и и : Тогда система запишется в виде

Читайте также:  Что значит добавить способ действия

Разделив второе уравнение системы на первое, получим Следовательно, Следовательно,

Бесконечно убывающая геометрическая прогрессия.

Совсем недавно мы говорили о том, что может быть как больше, так и меньше нуля, однако, есть особые значения при которых геометрическая прогрессия называется бесконечно убывающей.

При – прогрессия называется бесконечно убывающей.

Как ты думаешь, почему такое название?
Для начала запишем какую-нибудь геометрическую прогрессию, состоящую из членов.
Допустим, , а , тогда:

Мы видим, что каждый последующий член меньше предыдущего в раза, но будет ли какое-либо число ? Ты сразу же ответишь – «нет». Вот поэтому и бесконечно убывающая – убывает, убывает, а нулем никогда не становится.

Чтобы четко понять, как это выглядит визуально, давай попробуем нарисовать график нашей прогрессии. Итак, для нашего случая формула приобретает следующий вид:

На графиках нам привычно строить зависимость от , поэтому:

Суть выражения не изменилась: в первой записи у нас была показана зависимость значения члена геометрической прогрессии от его порядкового номера, а во второй записи – мы просто приняли значение члена геометрической прогрессии за , а порядковый номер обозначили не как , а как . Все, что осталось сделать – построить график.
Посмотрим, что у тебя получилось. Вот какой график получился у меня:

Видишь? Функция убывает, стремится к нулю, но никогда его не пересечет, поэтому она бесконечно убывающая. Отметим на графике наши точки, а заодно и то, что обозначает координата и :

Попробуй схематично изобразить график геометрической прогрессии при , если первый ее член также равен . Проанализируй, в чем разница с нашим предыдущим графиком?

Справился? Вот какой график получился у меня:

Теперь, когда ты полностью разобрался в основах темы геометрической прогрессии: знаешь, что это такое, знаешь, как найти ее член, а также знаешь, что такое бесконечно убывающая геометрическая прогрессия, перейдем к ее основному свойству.

Источник

Различные способы геометрическая прогрессии

Коды ОГЭ по математике: 4.2.3. Геометрическая прогрессия. Формула общего члена геометрической прогрессии. 4.2.4. Формула суммы первых нескольких членов геометрической прогрессии

Определения и обозначения

Определение . Геометрической прогрессией называют последовательность, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же не равное нулю число. (Первый член геометрической прогрессии также не может быть равен нулю.)

Читайте также:  Способ приема глутаминовой кислоты

В геометрической прогрессии отношение любого члена, начиная со второго, к предыдущему члену равно одному и тому же числу. Это число называют знаменателем геометрической прогрессии и обозначают буквой q. Правило, по которому образуются члены геометрической прогрессии, можно записать в виде рекуррентной формулы:

Или bn+1 = bn • q.

Пример 1. Пусть b1 = 1 и q = 3. Получаем геометрическую прогрессию: 1; 3; 9; 27; 81; 243; … Это возрастающая последовательность.

Пример 2. Пусть b1 = 5 и q = –2. В этом случае знаки у членов прогрессии чередуются: 5; 10; 20; 40; 80; 160; 320; … . Это последовательность не является ни возрастающей, ни убывающей.

Геометрическая прогрессия, члены которой положительные числа, обладает свойством: любой её член, начиная со второго, равен среднему геометрическому предыдущего и последующего членов, т. е.

Формулы n–го члена геометрической прогрессий

Формула n–го члена геометрической прогрессии (bn), первый член которой равен b1, a знаменатель равен q:

bn = b1 q n–1

Формула содержит три переменные. Если известны значения двух из них, то можно вычислить и значение третьей.

Если последовательность (bn) геометрическая прогрессия, то для любых натуральных n и m верно равенство: bn = bmq n- m .

Пример 3. В геометрической прогрессии b3 = –1/2, b6 = 4. Найдём b12.

Изображение членов геометрической прогрессии
точками на координатной плоскости

Члены числовой последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер члена, a по вертикальной соответствующий член последовательности.

На рисунке точками изображены несколько членов геометрической прогрессии (bn), в которой b1 = 1, q = 2; эта прогрессия задаётся формулой
bn = 2 n -1 .

Скорость её роста всё время увеличивается, и точки, соответствующие её членам, резко «уходят» вверх. Все они лежат на кривой, которая носит название экспонента. Чем выше поднимается экспонента у = 2 х , тем круче она становится.

Формула суммы первых n членов геометрической прогрессии

Если q ≠ 1, то

Заметим, что если 0

Это конспект по математике на тему «Геометрическая прогрессия». Выберите дальнейшие действия:

Источник

Оцените статью
Разные способы