Различные способы доказательства теоремы пифагора исследовательская работа

Проект по математике «Различные способы доказательства теоремы Пифагора»

МБОУ «Варсковская СШ»

Научно-исследовательская работа по математике.

Тема: «Различные способы доказательства теоремы Пифагора»

Авторы проекта : ученики 8 класса Гавриков Дмитрий и Сусликова Ульяна

Руководитель : Локоткова Оксана Анатольевна

2.1 Биография Пифагора

2.2 История открытия теоремы Пифагора.

2.3 Способы доказательства теоремы Пифагора.

В этом году на уроке геометрии мы познакомились с одной из важнейших теорем для прямоугольного треугольника, известной с древних времен – теоремой Пифагора. Кратко познакомились с историей этой теоремы, рассмотрели ее доказательство, но также узнали, что это одно из ее доказательств. Трудно найти человека, для которого имя Пифагора не ассоциировалось бы с его теоремой. Почти у каждого сохранились воспоминания о «пифагоровых штанах» — квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора очевидна: простота, красота и широкая значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал и придает ей особую притягательную силу, делает ее красивой. Но, кроме того, теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует более 100 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.), свидетельствует о гигантском числе ее конкретных реализаций. Зная теорему Пифагора можно находить ее новые применения и способы доказательств. Это и то, что теорема Пифагора была известна задолго до его рождения нас и поразило. Мы заинтересовались и решили провести исследование.

Цель исследования : рассмотрение других способов доказательства теоремы Пифагора.

Найти новые способы доказательства теоремы Пифагора.

Исследовать различные способы доказательства данной теоремы, не рассматриваемые в школе.

Продемонстрировать другим учащимся существование новых способов доказательства теоремы Пифагора.

Основной метод, который мы использовали в своей работе – это метод исследования, систематизации и обработки данных.

Гипотеза: возможно ли узнать, другие способы доказательства теоремы Пифагора, не изучаемые в школьном курсе геометрии.

Объект исследования: множество различных доказательств теоремы.

Предмет исследования: теорема Пифагора

Пифагор родился на острове Самос, одном из самых цветущих островов Ионии, в семье богатого ювелира. Ещё до рождения он был посвящен своими родителями свету Аполлона. Он был очень красив и с детства отличался разумом и справедливостью. С юных лет Пифагор стремился проникнуть в тайны Вечной Природы, постичь смысл Бытия. Знания, полученные им в храмах Греции, не давали ответов на все волнующие его вопросы, и он отправился в поисках мудрости в Египет. В течение 22 лет он проходил обучение в храмах Мемфиса и получил посвящение высшей степени. Здесь же он глубоко изучил математику, “науку чисел или всемирных принципов”, из которой впоследствии сделал центр своей системы. Из Мемфиса, по приказу вторгшегося в Египет Камбиза, Пифагор вместе с египетскими жрецами попадает в Вавилон, где проводит еще 12 лет. Здесь он имеет возможность изучить многие религии и культы, проникнуть в мистерии древней магии наследников Зороастра. Приблизительно в 530 году Пифагор, наконец, возвратился в Грецию и вскоре переселился в Южную Италию, в г. Кротон. В Кротоне он основал пифагорейский союз, который был одновременно философской школой, политической партией и религиозным братством. Школа Пифагора дала Греции целую плеяду талантливых философов, физиков и математиков. С их именем связаны в математике систематическое введение доказательств в геометрию, рассмотрение ее как абстрактной науки, создание учения о подобии, доказательство теоремы, носящей имя Пифагора, построение некоторых правильных многоугольников и многогранников, а также учение о четных и нечетных, простых и составных, о фигурных и совершенных числах, арифметических, геометрических и гармонических пропорциях и средних.

История открытия теоремы Пифагора.

Долгое время считали, что до Пифагора эта теорема не была известна. В настоящее вре-мя установлено, что эта величайшая теорема встречается в вавилонских текстах, написанных за 1200 лет до Пифагора. Открытие теоремы Пифагором окружено ореолом красивых легенд. Прокл, комментируя последнее предложение первой книги «Начал» Евклида, пишет: «Если послушать тех, кто любит повторять древние легенды, то придется сказать, что эта теорема восходит к Пифагору; рассказывают, что он в честь этого открытия принес в жертву быка». Впрочем, более щедрые сказители одного быка превратили в одну гекатомбу, а это уже целая сотня. И хотя еще Цицерон заметил, что всякое пролитие крови было чуждо уставу пифагорейского ордена, легенда эта прочно срослась с теоремой Пифагора и через две тысячи лет продолжала вызывать горячие отклики. Так, оптимист Михаил Ломоносов (1711—1765) писал: «Пифагор за изобретение одного геометрического правила Зевсу принес на жертву сто волов. Но ежели бы за найденные в нынешние времена от остроумных математиков правила по суеверной его ревности поступать, то едва бы в целом свете столько рогатого скота сыскалось». А вот ироничный Генрих Гейне (1797—1856) видел развитие той же ситуации несколько иначе: «Кто знает! Кто знает! Возможно, душа Пифагора переселилась в беднягу кандидата, который не смог доказать теорему Пифагора и провалился из-за этого на экзаменах, тогда как в его экзаменаторах обитают души тех быков, которых Пифагор, обрадованный открытием своей теоремы, принес в жертву бессмертным богам». Сегодня теорема Пифагора обнаружена в различных частных задачах и чертежах: и в египетском треугольнике в папирусе времен фараона Аменемхета первого (ок. 2000 до н.э.), и в вавилонских клинописных табличках эпохи царя Хаммурапи (XVIII в. до н.э.), и в древнеиндийском геометрическо-теологическом трактате VII —V вв. до н.э. «Сульва сутра» («Правила веревки»). В древнейшем китайском трактате «Чжоу-би суань цзинь», время создания которого точно не известно, утверждается, что в XII в. до н. э. китайцы знали свойства египетского треугольника, а к VI в. до н.э.—и общий вид теоремы. Несмотря на все это, имя Пифагора столь прочно сплавилось с теоремой Пифагора, что сейчас просто не-возможно представить, что это словосочетание распадется. То же относится и к легенде о заклании быков Пифагором. Да и вряд ли нужно препарировать историко-математическим скальпелем красивые древние предания. Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов.

Читайте также:  Способы передачи инфекции при гриппе

Способы доказательства теоремы Пифагора.

1. Простейшее доказательство

Это доказательство получается в простейшем случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема. В самом деле, достаточно посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для такого треугольника АВС: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, — по 2. Теорема доказана.

В течение двух тысячелетий наиболее распространенным было доказательство теоремы Пифагора, придуманное Евклидом. Данное доказательство приведено в предложении 47 первой книги «Начал». Это же доказательство рассмотрено и в учебнике А.П.Киселева «Геометрия». Чертёж, применяемый при доказательстве этой теоремы, в шутку называют «пифагоровы штаны». В течение долгого времени он считался одним из символов математической науки.

На гипотенузе и катетах прямоугольного треугольника АВС строятся соответствующие квадраты и доказывается, что прямоугольник BJLD равновелик квадрату ABFH, а прямоугольник JCEL — квадрату АСКG. Тогда сумма квадратов на катетах будет равна квадрату на гипотенузе. В самом деле, затушеванные на рисунке треугольники ABD и BFC равны по двум сторонам и углу между ними: FB = AB, BC = BD и  FBC =  ABD . Но S ABD = 1/2 S BJLD , так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично S FBC = 1/2 S ABFH (BF-общее основание, АВ — общая высота). Отсюда, учитывая, что S ABD = S FBC , имеем S BJLD = S ABFH . Аналогично, используя равенство треугольников ВСК и АСЕ, доказывается, что S JCEL = S ACKG . Итак, S ABFH + S ACKG = S BJLD + S JCEL = S BCED , что и требовалось доказать.

Это доказательство, основанное на площади, рассматривается в учебнике «Геометрия 7-9» Л.С.Атанасяна.

Достроим треугольник до квадрата со стороной a + b .Площадь этого квадрата равна ( a + b ) 2

С другой стороны, этот квадрат составлен из четырех равных прямоугольных треугольников, площадь каждого из которых равна ab , и квадрата со стороной с, поэтому S = 4 ab + c 2 = 2 ab + c 2 . Таким образом, ( a + b ) 2 = 2 ab + c 2 , откуда c 2 = a 2 + b 2 что и требовалось доказать.

4.Через подобие треугольников.

Этот способ рассматривается в учебниках «Геометрия 7-9» А.В.Погорелова и А.П.Киселева «Геометрия».

В прямоугольном ∆ АВС (  С = 90º ) проведём высоту С D . Тогда исходный треугольник разобьётся на два треугольника, тоже являющихся прямоугольными. Полученные треугольники будут подобны друг другу и исходному треугольнику ( первый признак подобия прямоугольных треугольников) Так как у подобных треугольников сходственные стороны пропорциональны, то

АС : А D = АВ : АС = ВС : С D ; АВ : ВС = ВС : В D = АС : С D Получим верные равенства:

АС · АС = АВ · А D , ВС · ВС = АВ · В D

в · в = с · А D а · а = с ·В D

Складывая эти два верных равенства, получим

в ² + а ² = с (А D + В D )

с ² = а ² + в ² Теорема доказана.

5. Через косинус угла.

Проведем высоту С D из вершины прямого угла С.

По определению косинуса угла со s A = AD / AC = AC / AB , отсюда следует

со s B = BD / BC = BC / AB , значит AB·BD = ВС 2

Сложив полученные равенства почленно, получим: АВ 2 = АС 2 + ВС 2

6. Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого. Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

7.Старейшее доказательство(содержится в одном из произведений Бхаскары).

П усть АВС D квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а,

АЕ = b ); Пусть СК ВЕ = а, DL CK , AM DL

ΔABE = ∆BCK = ∆CDL = ∆AMD,

значит KL = LM = ME = EK = a-b.

8. Доказательство Хоукинса.

Пр иведем еще одно доказательство, которое имеет вычислительный характер, однако сильно отличается от всех предыдущих. Оно опубликовано англичанином Хоукинсом в 1909 году; было ли оно известно до этого — трудно сказать.

Прямоугольный треугольник ABC с прямым углом C повернем на 90° так, чтобы он занял положение A’CB’. Продолжим гипотенузу A’В’ за точку A’ до пересечения с линией АВ в точке D. Отрезок В’D будет высотой треугольника В’АВ. Рассмотрим теперь заштрихованный четырехугольник A’АВ’В. Его можно разложить на два равнобедренных треугольника САA’ и СВВ’ (или на два треугольника A’В’А и A’В’В).

S CAA’ = b²/2
S CBB’ = a²/2
S A’AB’B = (a²+b²)/2
Треугольники A’В’А и A’В’В имеют общее основание с и высоты DA и DB, поэтому:

S A’AB’B = c·DA/2+ c·DB/2 = c (DA+DB)/2 = c²/2

Сравнивая два полученных выражения для площади, получим: a² + b² = c²

9. Доказательство Гофмана.

Треугольник ABC с прямым углом С; отрезок BF перпендикулярен СВ и равен ему, отрезок BE перпендикулярен АВ и равен ему, отрезок AD перпендикулярен АС и равен ему; точки F, С, D принадлежат одной прямой; четырехугольники ADFB и АСВЕ равновелики, так как ABF = ЕСВ; треугольники ADF и АСЕ равновелики; отнимем от обоих равновеликих четырехугольников общий для них треугольник ABC, получим

В результате нашей исследовательской работы, мы рассмотрели несколько различных способов доказательства теоремы Пифагора, которые не представлены в школьном курсе геометрии. Работа над проектом позволили нам расширить свои знания в области геометрии. К сожалению, невозможно привести все доказательства теоремы, однако хочется надеяться, что приведенные примеры убедительно свидетельствуют об огромном интересе сегодня, да и вчера, проявляемом по отношению к теореме Пифагора.

Источник

Исследовательская работа «Несколько способов доказательств теоремы Пифагора»

Тема исследовательской работы, выбранная ученицей, интересна и актуальна. Актуальность данного исследования определяется необходимостью узнать: почему открытие данного утверждения приписывают древнегреческому философу и математику Пифагору.

В данной работе автор выясняет: какую роль сыграл Пифагор в развитии математики, каково практическое применение теоремы Пифагора в жизни людей. На основе изучения литературы, Юлия узнает о различных трактовках данной теоремы и привод шесть различных способов доказательств теоремы Пифагора.

Работа грамотна, логична, последовательна в изложении мыслей, оформлена в соответствии с требуемыми нормами; очень интересна и познавательна, носит реферативный характер.

Скачать:

Вложение Размер
neskolko_sposobov_dokazatelstv_teoremy_pifagora-_issledovatelskaya_rabota_.docx 265.71 КБ

Предварительный просмотр:

1. Из биографии Пифагора …………………………………………………. 2

2. Пифагор и пифагорейцы …………………………………………………. 4

3. Из истории создания теоремы Пифагора ………………………………… 6

4. Шесть доказательств теоремы …………………………………………. 10

5. Применение теоремы Пифагора ………………………………………….. 14

6. Задача индийского математика XII века Бхаскары …………………….. 14

7. Задача из учебника «Арифметика» Леонтия Магницкого ……………. 15

8. Задача из китайской «Математики в девяти книгах» ……………………. 15

Литература и Интернет-ресурсы .……………………………………………. 17

В этом учебном году я познакомились с интересной теоремой, известной, как оказалось с древнейших времён:

«Квадрат, построенный на гипотенузе прямоугольного треугольника равновелик сумме квадратов построенных на катетах».

Обычно открытие этого утверждения приписывают древнегреческому философу и математику Пифагору (VI век до н.э). Но изучение древних рукописей показало, что это утверждение было известно задолго до рождения Пифагора.

Я заинтересовались, почему в таком случае её связывают с именем Пифагора.

Целью моего исследования было: узнать, кто такой был Пифагор, и какое отношение он имеет к этой теореме.

Изучая историю теоремы, я решила выяснить:

  • Существуют ли другие доказательства этой теоремы?
  • Каково значение этой теоремы в жизни людей?
  • Какую роль сыграл Пифагор в развитии математики?

1. Из биографии Пифагора

Пифагор Самосский – великий греческий учёный. Его имя знакомо каждому школьнику. Если попросят назвать одного древнего математика, то абсолютное большинство назовёт Пифагора. Его известность связана с названием теоремы Пифагора. Хотя сейчас уже мы знаем, что эта теорема была известна в древнем Вавилоне за 1200 лет до Пифагора, а в Египте за 2000 лет до него был известен прямоугольный треугольник со сторонами 3, 4, 5, мы по-прежнему называем её по имени этого древнего учёного.

Про жизнь Пифагора достоверно почти ничего не известно, но с его именем связано большое количество легенд.

Пифагор родился в 570 году до н. э на острове Самос. Отцом Пифагора был Мнесарх – резчик по драгоценным камням. Мнесарх, по словам Апулея, «славился среди мастеров своим искусством вырезать геммы», но стяжал скорее славу, чем богатство. Имя матери Пифагора не сохранилось.

Пифагор имел красивую внешность, носил длинную бороду, а на голове золотую диадему. Пифагор — это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор — «убеждающий речью».)

Среди учителей юного Пифагора были старец Гермодамант и Ферекид Сиросский. Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера.

Ферекид же был философом и считался основателем италийской школы философии. Таким образом, если Гермодамант ввел юного Пифагора в круг муз, то Ферекид обратил его ум к логосу. Ферекид направил взор Пифагора к природе и в ней одной советовал видеть своего первого и главного учителя.

Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, и он отправляется в Милет, где встречается с другим ученым — Фалесом. Фалес посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал.

В 550 году до н. э Пифагор принимает решение и отправляется в Египет. Итак, перед Пифагором открывается неизвестная страна и неведомая культура. Многое поражало и удивляло Пифагора в этой стране, и после некоторых наблюдений за жизнью египтян Пифагор понял, что путь к знаниям, охраняемым кастой жрецов, лежит через религию.

После одиннадцати лет обучения в Египте Пифагор отправляется на родину, где по пути попадает в Вавилонский плен. Там он знакомится с вавилонской наукой, которая была более развита, чем египетская. Вавилоняне умели решать линейные, квадратные и некоторые виды кубических уравнений. Они успешно применяли теорему Пифагора более чем за 1000 лет до Пифагора. Сбежав из плена, он не смог долго оставаться на родине из-за царившей там атмосферы насилия и тирании. Он решил переселиться в Кротон (греческая колония на севере Италии) .

Именно в Кротоне начинается самый славный период в жизни Пифагора. Там он учредил нечто вроде религиозно-этического братства или тайного монашеского ордена, члены которого обязывались вести так называемый пифагорейский образ жизни.

2. Пифагор и пифагорейцы

Пифагор организовал в греческой колонии на юге Апенинского полуострова религиозно-этическое братство, типа монашеского ордена, который впоследствии назовут пифагорейским союзом. Члены союза должны были придерживаться определённых принципов: во-первых, стремиться к прекрасному и славному, во-вторых, быть полезными, в-третьих, стремиться к высокому наслаждению.

Система морально-этических правил, завещанная Пифагором своим ученикам, была собрана в своеобразный моральный кодекс пифагорейцев «Золотые стихи», которые пользовались большой популярностью в эпоху Античности, эпоху Средневековья и эпоху Возрождения.

Пифагорейская система занятий состояла из трёх разделов:

  • учения о числах – арифметике,
  • учения о фигурах – геометрии,
  • учения о строении Вселенной – астрономии.

Система образования, заложенная Пифагором, просуществовала много веков.

Пифагорейцы учили, что Бог положил числа в основу мирового порядка. Бог – это единство, а мир – множество и состоит из противоположностей. То, что приводит противоположности к единству и соединяет всё в космос, есть гармония. Гармония является божественной и заключается в числовых выражениях. Кто до конца изучит гармонию, сам станет божественным и бессмертным.

Музыка, гармония и числа были неразрывно связаны в учении пифагорейцев. Математика и числовая мистика были фантастически перемешаны в нём. Пифагор считал, что число есть сущность всех вещей и что Вселенная представляет собой гармоническую систему чисел и их отношений.

Школа Пифагора много сделала, чтобы придать геометрии характер науки. Основной особенностью метода Пифагора было объединение геометрии с арифметикой.

Пифагор много занимался пропорциями и прогрессиями и, вероятно, подобием фигур, так как ему приписывают решение задачи: «По данным двум фигурам построить третью, равновеликую одной из данных и подобную второй».

Пифагор и его ученики ввели понятие о многоугольных, дружественных, совершенных числах и изучали их свойства. Арифметика как практика вычислений не интересовала Пифагора, и он с гордостью заявил, что «поставил арифметику выше интересов торговца».

Пифагор одним из первых считал, что Земля имеет форму шара и является центром Вселенной, что Солнце, Луна и планеты имеют собственное движение, отличное от суточного движения неподвижных звезд.

Учение пифагорейцев о движении Земли Николай Коперник воспринял как предысторию своего гелиоцентрического учения. Недаром церковь объявила систему Коперника «ложным пифагорейским учением».

В школе Пифагора открытия учеников приписывались учителю, поэтому практически невозможно определить, что сделал сам Пифагор, а что его ученики.

Споры ведутся вокруг пифагорейского союза уже третье тысячелетие, однако общего мнения так и нет. У пифагорейцев было множество символов и знаков, которые были своего рода заповедями: например, «через весы не шагай», т.е. не нарушай справедливости; огня ножом не вороши», т. е. не задевай гневных людей обидными словами.

Но главным пифагорейским символом —

символом здоровья и опознавательным знаком –

была пентаграмма или пифагорейская звезда –

звёздчатый пятиугольник, образованный диагоналями

Членами пифагорейского союза были жители многих городов Греции.

В своё общество пифагорейцы принимали и женщин. Союз процветал более двадцати лет, а потом начались гонения на его членов, многие из учеников были убиты.

О смерти самого Пифагора ходило много самых разных легенд. Но учение Пифагора и его учеников продолжало жить.

3. Из истории создания теоремы Пифагора

В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих «Начал». С другой стороны, Прокл утверждает, что доказательство в «Началах» принадлежит самому Евклиду.

Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет немецкого писателя-романиста Шамиссо:

Пребудет вечной истина, как скоро
Ее познает слабый человек!
И ныне теорема Пифагора
Верна, как и в его далекий век.

Обильно было жертвоприношенье
Богам от Пифагора. Сто быков
Он отдал на закланье и сожженье
За света луч, пришедший с облаков.
Поэтому всегда с тех самых пор,
Чуть истина рождается на свет,
Быки ревут, ее почуя, вслед.
Они не в силах свету помешать,
А могут лишь, закрыв глаза, дрожать
От страха, что вселил в них Пифагор.

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

«Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4» .

Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 м. и привяжем к ней по цветной полоске на расстоянии 3м. от одного конца и 4 метра от другого.

Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра. В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары.

Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея).

По мнению Кантора, гарпедонапты, или «натягиватели веревок», строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.

Несколько больше было известно о теореме Пифагора вавилонянам. В одном тексте, относимом ко времени Хаммураби, т.е. к 2000 году до нашей эры, приводится приближенное вычисление гипотенузы прямоугольного треугольника; отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера, называемые Сульвасутры. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека в цилиндре, в те времена нередко употреблялся как символ математики.

В заключение приведем различные формулировки теоремы Пифагора в переводе с греческого, латинского и немецкого языков.

Евклида эта теорема гласит (дословный перевод):

«В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен квадратам на сторонах, заключающих прямой угол».

Латинский перевод арабского текста Аннариции (около 900 года до нашей эры), сделанный Герхардом Кремонским (12 век) гласит (в переводе):

«Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»

В Geometry Culmonensis (около 1400года) теорема читается так (в переводе):

“ Итак, площадь квадрата, измеренного по длиной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу”

В русском переводе евклидовых «Начал», теорема Пифагора изложена так:

«В прямоугольном треугольнике квадрат из стороны, противолежащей прямому углу, равен сумме квадратов из сторон, содержащих прямой угол».

Как видим, в разных странах и разных языках существуют различные варианты формулировки знакомой нам теоремы. Созданные в разное время и в разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариантов.

4. Шесть способов доказательства теоремы Пифагора

4.1. Древнекитайское доказательство

На древнекитайском чертеже четыре равных прямоугольных треугольника с катетами a, b и гипотенузой с уложены так, что их внешний контур образует квадрат со стороной a+b , а внутренний – квадрат со стороной с , построенный на гипотенузе

a 2 + 2ab +b 2 = c 2 + 2ab

4.2. Доказательство Дж. Гардфилда (1882 г.)

Расположим два равных прямоугольных треугольника так, чтобы катет одного из них был продолжением другого.

Площадь рассматриваемой трапеции находится как произведение полусуммы оснований на высоту

C другой стороны, площадь трапеции равна сумме площадей полученных треугольников:

Приравнивая данные выражения, получаем:

или с 2 = a 2 + b 2

4.3. Старейшее доказательство

(содержится в одном из произведений Бхаскары).

Пусть АВСD квадрат, сторона которого равна гипотенузе прямоугольного треугольника АВЕ (АВ = с, ВЕ = а,

Источник

Читайте также:  Гринвей спонж для зубов способ применения
Оцените статью
Разные способы