- Сложение дробей: теория и практика
- Понятие дроби
- Основные свойства дробей
- Как плюсовать дроби
- Сложение дробей с одинаковыми знаменателями
- Сложение дробей с разными знаменателями
- Сложение смешанных чисел
- Сложение и вычитание дробей с разными знаменателями
- Урок 4. Алгебра 8 класс ФГОС
- В данный момент вы не можете посмотреть или раздать видеоурок ученикам
- Получите невероятные возможности
- Конспект урока «Сложение и вычитание дробей с разными знаменателями»
- Сложение дробей
- Сложение дробей с одинаковыми знаменателями
- Сложение дробей с разными знаменателями
- Как найти общий знаменатель
- Сложение и вычитание алгебраических дробей: правила, примеры
- Действия сложения и вычитания при одинаковых знаменателях
- Действия сложения и вычитания при разных знаменателях
- Приведение алгебраических дробей к общему знаменателю
- Сложение и вычитание алгебраической дроби и многочлена
Сложение дробей: теория и практика
О чем эта статья:
Понятие дроби
Дробь — одна из форм представления числа в математике. Это запись, в которой a и b являются числами или выражениями. Существует два формата записи:
- обыкновенный вид — 1/2 или a/b,
- десятичный вид — 0,5.
Над чертой принято писать делимое, которое является числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между ними означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел, например, 5/9 или (1,5 — 0,2)/15.
- Алгебраические — состоят из переменных, например, (x + y)/(x — y). В этом случае значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 3/7 и 31/45.
Неправильной — ту, у которой числитель больше знаменателя или равен ему. Например, 21/4. Такое число является смешанным и читается, как пять целых одна четвертая, а записывается — 5 1\4.
Основные свойства дробей
1. Дробь не имеет значения, при условии, если делитель равен нулю.
2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
3. Равными называются такие a/b и c/d, если:
4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Как плюсовать дроби
Сложение — это арифметическое действие, в результате которого получается новое число. Оно содержит в себе сумму заданных чисел.
Свойства сложения
- От перестановки мест слагаемых сумма не меняется: a + b = b + a.
- Чтобы к сумме двух чисел прибавить третье нужно к первому числу прибавить сумму второго и третьего числа: (a + b) + c = a + (b + c).
- Если к числу прибавить ноль, получится само число: a + 0 = 0 + a = a
- При сложении числа можно переставлять и объединять в группы, результат от этого не изменится.
Давайте рассмотрим несколько вариантов сложения обыкновенных дробей.
Сложение дробей с одинаковыми знаменателями
Чтобы получить результат суммы двух дробей с равными знаменателями, нужно сложить числители исходных дробей, а знаменатель оставить прежним.
Не забудьте проверить, можно ли сократить дробь.
Сложение дробей с разными знаменателями
Как складывать дроби с разными знаменателями — для этого нужно найти наименьший общий знаменатель (далее — НОЗ), а затем воспользоваться предыдущим правилом. Вот, что делать:
1. Найдем наименьшее общее кратное (далее — НОК) для определения единого делителя.
Для этого записываем в столбик числа, которые в сумме дают значения делителей. Далее перемножаем полученное и получаем НОК.
НОК (15, 18) = 3 * 2 * 3 * 5 = 90
2. Найдем дополнительные множители для каждой дроби. Для этого НОК делим на каждый знаменатель:
Полученные числа записываем справа сверху над числителем.
3. Воспользуемся одним из основных свойств дробей: перемножим делимое и делитель на дополнительный множитель. После умножения делитель должен быть равен наименьшему общему кратному, которое мы ранее высчитывали. Затем можно перейти к сложению.
4. Проверим полученный результат:
- если делимое больше делителя, нужно преобразовать в смешанное число;
- если есть что сократить, нужно выполнить сокращение.
Еще раз ход решения одной строкой:
Сложение смешанных чисел
Сложение смешанных чисел можно привести к отдельному сложению их целых частей и дробных частей. Для этого нужно действовать поэтапно:
1. Сложить целые части.
2. Сложить дробные части.
Если знаменатели разные, воспользуемся знаниями из предыдущего примера и приведем к общему.
3. Суммируем полученные результаты.
Если при сложении дробных частей получилась неправильная дробь, нужно выделить ее целую часть и прибавить к полученной ранее целой части.
Если урок в самом разгаре и посчитать нужно быстро — можно воспользоваться онлайн-калькулятором. Вот несколько подходящих:
Прибавление и вычитание дробей — смежные темы: принципы и закономерности очень похожи. Чтобы закрепить знания, нужно решать примеры сложения дробей, как можно чаще.
Источник
Сложение и вычитание дробей с разными знаменателями
Урок 4. Алгебра 8 класс ФГОС
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Сложение и вычитание дробей с разными знаменателями»
Сложение и вычитание рациональных дробей с разными знаменателями выполняется аналогично сложению и вычитанию дробей с одинаковыми знаменателями, но предварительно нужно дроби привести к общему знаменателю.
Аналогичным образом выполняют вычитание рациональных дробей с разными знаменателями.
Пример 1. Найти сумму дробей.
Пример 2. Найти разность дробей.
Мы рассмотрели простейшие случаи на сложение и вычитание рациональных дробей с разными знаменателями. Но чаще всего приходится сначала дроби приводить к общему знаменателю, а затем уже выполнять сложение и вычитание рациональных дробей с одинаковыми знаменателями.
Алгоритм приведения рациональных дробей к общему знаменателю:
1. Разложить знаменатели каждой из дробей на множители.
3. Для каждой из дробей найти дополнительный множитель.
4. Числитель дроби умножить на её дополнительный множитель.
5. Записать каждую дробь с числителем и общим знаменателем.
Пример 3. Найти сумму дробей.
Пример 4: Найдите разность дробей.
Алгоритм сложения (вычитания) рациональных дробей с разными знаменателями.
Для того чтобы сложить (вычесть) дроби с разными знаменателями, надо:
2. Привести дроби к общему знаменателю.
3. Сложить (вычесть) дроби по правилу сложения (вычитания) рациональных дробей с одинаковыми знаменателями.
4. По возможности упростить полученную дробь.
Задание: нужно преобразовать выражение и представьте его в виде дроби.
Для того чтобы привести рациональные дроби к общему знаменателю, надо:
1. Разложить знаменатели каждой из дробей на множители.
3. Для каждой из дробей найти дополнительный множитель.
4. Числитель дроби умножить на её дополнительный множитель.
5. Записать каждую дробь с числителем и общим знаменателем.
Для того чтобы сложить (вычесть) дроби с разными знаменателями, надо:
2. Привести дроби к общему знаменателю.
3. Сложить (вычесть) дроби по правилу сложения (вычитания) рациональных дробей с одинаковыми знаменателями.
4. По возможности упростить полученную дробь.
Источник
Сложение дробей
При сложении дробей могут встретиться разные случаи.
Сложение дробей с одинаковыми знаменателями
Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же.
C помощью букв это правило сложения можно записать так:
Записывая ответ, проверьте нельзя ли полученную дробь сократить.
Сложение дробей с разными знаменателями
Чтобы сложить дроби с разными знаменателями нужно воспользоваться следующими правилами.
- Привести данные дроби к наименьшему общему знаменателю (НОЗ). Для этого найти наименьшее общее кратное знаменателей.
Пример. Сложить дроби.
Как найти общий знаменатель
Находим НОК (15, 18) .
НОК (15, 18) = 3 · 2 · 3 · 5 = 90
- Найти дополнительные множители для каждой дроби. Для этого наименьший общий знаменатель (НОК из пункта 1) делим по очереди на знаменатель каждой дроби.
Полученные числа и будут дополнительными множителями для каждой из дробей. Множители записываем над числителем дроби справа сверху.
90 : 15 = 6 — дополнительный множитель для дроби
3 |
15 |
.
90 : 18 = 5 — дополнительный множитель для дроби
4 |
18 |
.
Числитель и знаменатель каждой дроби умножаем на свой дополнительный множитель, пользуясь основным свойством дроби.
После умножения в знаменателях обеих дробей должен получиться наименьший общий знаменатель. Затем складываем дроби как дроби с одинаковыми знаменателями.
Проверяем полученную дробь.
- Eсли в результате получилась неправильная дробь, результат записываем в виде смешанного числа. Проверим нашу дробь.
Источник
Сложение и вычитание алгебраических дробей: правила, примеры
Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.
Действия сложения и вычитания при одинаковых знаменателях
Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.
К примеру: 3 7 + 2 7 = 3 + 2 7 = 5 7 и 5 11 — 4 11 = 5 — 4 11 = 1 11 .
Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.
Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей — новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).
Укажем пример применения сформулированного правила.
Заданы алгебраические дроби: x 2 + 2 · x · y — 5 x 2 · y — 2 и 3 — x · y x 2 · y — 2 . Необходимо осуществить их сложение.
Решение
Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.
Сложив многочлены, являющиеся числителями исходных дробей, получим: x 2 + 2 · x · y − 5 + 3 − x · y = x 2 + ( 2 · x · y − x · y ) − 5 + 3 = x 2 + x · y − 2 .
Тогда искомая сумма будет записана как: x 2 + x · y — 2 x 2 · y — 2 .
В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:
x 2 + 2 · x · y — 5 x 2 · y — 2 + 3 — x · y x 2 · y — 2 = x 2 + 2 · x · y — 5 + 3 — x · y x 2 · y — 2 = x 2 + x · y — 2 x 2 · y — 2
Ответ: x 2 + 2 · x · y — 5 x 2 · y — 2 + 3 — x · y x 2 · y — 2 = x 2 + x · y — 2 x 2 · y — 2 .
Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.
Необходимо вычесть из алгебраической дроби x x 2 — 4 · y 2 дробь 2 · y x 2 — 4 · y 2 .
Решение
Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:
x x 2 — 4 · y 2 — 2 · y x 2 — 4 · y 2 = x — 2 · y x 2 — 4 · y 2
Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:
x — 2 · y x 2 — 4 · y 2 = x — 2 · y ( x — 2 · y ) · ( x + 2 · y ) = 1 x + 2 · y
Ответ: x x 2 — 4 · y 2 — 2 · y x 2 — 4 · y 2 = 1 x + 2 · y .
По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:
1 x 5 + 2 · x 3 — 1 + 3 · x — x 4 x 5 + 2 · x 3 — 1 — x 2 x 5 + 2 · x 3 — 1 — 2 · x 3 x 5 + 2 · x 3 — 1 = 1 + 3 · x — x 4 — x 2 — 2 · x 3 x 5 + 2 · x 3 — 1
Действия сложения и вычитания при разных знаменателях
Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.
К примеру, 2 5 + 1 3 = 6 15 + 5 15 = 11 15 или 1 2 — 3 7 = 7 14 — 6 14 = 1 14 .
Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:
Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:
- исходные дроби привести к общему знаменателю;
- выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.
Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.
Приведение алгебраических дробей к общему знаменателю
Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:
- сначала определяем общий знаменатель алгебраических дробей;
- затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
- последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
Пример 3
Заданы алгебраические дроби: a + 2 2 · a 3 — 4 · a 2 , a + 3 3 · a 2 — 6 · a и a + 1 4 · a 5 — 16 · a 3 . Необходимо привести их к общему знаменателю.
Решение
Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2 · a 3 − 4 · a 2 = 2 · a 2 · ( a − 2 ) , 3 · a 2 − 6 · a = 3 · a · ( a − 2 ) и 4 · a 5 − 16 · a 3 = 4 · a 3 · ( a − 2 ) · ( a + 2 ) . Отсюда можем записать общий знаменатель: 12 · a 3 · ( a − 2 ) · ( a + 2 ) .
Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:
- для первой дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 2 · a 2 · ( a − 2 ) ) = 6 · a · ( a + 2 ) ;
- для второй дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 3 · a · ( a − 2 ) ) = 4 · a 2 · ( a + 2 );
- для третьей дроби: 12 · a 3 · ( a − 2 ) · ( a + 2 ) : ( 4 · a 3 · ( a − 2 ) · ( a + 2 ) ) = 3 .
Следующий шаг — умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:
a + 2 2 · a 3 — 4 · a 2 = ( a + 2 ) · 6 · a · ( a + 2 ) ( 2 · a 3 — 4 · a 2 ) · 6 · a · ( a + 2 ) = 6 · a · ( a + 2 ) 2 12 · a 3 · ( a — 2 ) · ( a + 2 ) a + 3 3 · a 2 — 6 · a = ( a + 3 ) · 4 · a 2 · ( a + 2 ) 3 · a 2 — 6 · a · 4 · a 2 · ( a + 2 ) = 4 · a 2 · ( a + 3 ) · ( a + 2 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) a + 1 4 · a 5 — 16 · a 3 = ( a + 1 ) · 3 ( 4 · a 5 — 16 · a 3 ) · 3 = 3 · ( a + 1 ) 12 · a 3 · ( a — 2 ) · ( a + 2 )
Ответ: a + 2 2 · a 3 — 4 · a 2 = 6 · a · ( a + 2 ) 2 12 · a 3 · ( a — 2 ) · ( a + 2 ) ; a + 3 3 · a 2 — 6 · a = 4 · a 2 · ( a + 3 ) · ( a + 2 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) ; a + 1 4 · a 5 — 16 · a 3 = 3 · ( a + 1 ) 12 · a 3 · ( a — 2 ) · ( a + 2 ) .
Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.
Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.
Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.
Заданы алгебраические дроби: 1 — 2 · x x 2 + x и 2 · x + 5 x 2 + 3 · x + 2 . Необходимо осуществить действие их сложения.
Решение
Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x 2 + x = x · ( x + 1 ) , а x 2 + 3 · x + 2 = ( x + 1 ) · ( x + 2 ) , т.к. корни квадратного трехчлена x 2 + 3 · x + 2 это числа: — 1 и — 2 . Определяем общий знаменатель: x · ( x + 1 ) · ( x + 2 ) , тогда дополнительные множители будут: x + 2 и – x для первой и второй дробей соответственно.
Таким образом: 1 — 2 · x x 2 + x = 1 — 2 · x x · ( x + 1 ) = ( 1 — 2 · x ) · ( x + 2 ) x · ( x + 1 ) · ( x + 2 ) = x + 2 — 2 · x 2 — 4 · x x · ( x + 1 ) · x + 2 = 2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) и 2 · x + 5 x 2 + 3 · x + 2 = 2 · x + 5 ( x + 1 ) · ( x + 2 ) = 2 · x + 5 · x ( x + 1 ) · ( x + 2 ) · x = 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 )
Теперь сложим дроби, которые мы привели к общему знаменателю:
2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = = 2 — 2 · x 2 — 3 · x + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = 2 · 2 · x x · ( x + 1 ) · ( x + 2 )
Полученную дробь возможно сократить на общий множитель x + 1 :
2 + 2 · x x · ( x + 1 ) · ( x + 2 ) = 2 · ( x + 1 ) x · ( x + 1 ) · ( x + 2 ) = 2 x · ( x + 2 )
И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:
2 x · ( x + 2 ) = 2 x 2 + 2 · x
Запишем ход решения кратко в виде цепочки равенств:
1 — 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 1 — 2 · x x · ( x + 1 ) + 2 · x + 5 ( x + 1 ) · ( x + 2 ) = = 1 — 2 · x · ( x + 2 ) x · x + 1 · x + 2 + 2 · x + 5 · x ( x + 1 ) · ( x + 2 ) · x = 2 — 2 · x 2 — 3 · x x · ( x + 1 ) · ( x + 2 ) + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = = 2 — 2 · x 2 — 3 · x + 2 · x 2 + 5 · x x · ( x + 1 ) · ( x + 2 ) = 2 · x + 1 x · ( x + 1 ) · ( x + 2 ) = 2 x · ( x + 2 ) = 2 x 2 + 2 · x
Ответ: 1 — 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 2 x 2 + 2 · x
Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.
Необходимо осуществить вычитание дробей: 2 1 1 3 · x — 2 21 и 3 · x — 1 1 7 — 2 · x .
Решение
Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:
2 1 1 3 · x — 2 21 = 2 4 3 · x — 2 21 = 2 4 3 · x — 1 14 и 3 · x — 1 1 7 — 2 · x = 3 · x — 1 — 2 · x — 1 14
Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.
Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 3 4 , а второй на — 1 2 , тогда получим:
2 4 3 · x — 1 14 = 3 4 · 2 3 4 · 4 3 · x — 1 14 = 3 2 x — 1 14 и 3 · x — 1 — 2 · x — 1 14 = — 1 2 · 3 · x — 1 — 1 2 · — 2 · x — 1 14 = — 3 2 · x + 1 2 x — 1 14 .
Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14 :
3 2 x — 1 14 = 14 · 3 2 14 · x — 1 14 = 21 14 · x — 1 и — 3 2 · x + 1 2 x — 1 14 = 14 · — 3 2 · x + 1 2 x — 1 14 = — 21 · x + 7 14 · x — 1 .
Наконец, выполним требуемое в условии задачи действие – вычитание:
2 1 1 3 · x — 2 21 — 3 · x — 1 1 7 — 2 · x = 21 14 · x — 1 — — 21 · x + 7 14 · x — 1 = 21 — — 21 · x + 7 14 · x — 1 = 21 · x + 14 14 · x — 1
Ответ: 2 1 1 3 · x — 2 21 — 3 · x — 1 1 7 — 2 · x = 21 · x + 14 14 · x — 1 .
Сложение и вычитание алгебраической дроби и многочлена
Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1 .
Необходимо произвести сложение многочлена x 2 − 3 с алгебраической дробью 3 · x x + 2 .
Решение
Запишем многочлен как алгебраическую дробь со знаменателем 1 : x 2 — 3 1
Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:
x 2 — 3 + 3 · x x + 2 = x 2 — 3 1 + 3 · x x + 2 = x 2 — 3 · ( x + 2 ) 1 · x + 2 + 3 · x x + 2 = = x 3 + 2 · x 2 — 3 · x — 6 x + 2 + 3 · x x + 2 = x 3 + 2 · x 2 — 3 · x — 6 + 3 · x x + 2 = = x 3 + 2 · x 2 — 6 x + 2
Ответ: x 2 — 3 + 3 · x x + 2 = x 3 + 2 · x 2 — 6 x + 2 .
Источник