Определение рациональных способов раскроя материала.
Цели
Показаны возможности использования модели линейного программирования для решения задач раскроя. Эта область приложения модели линейного программирования хорошо изучена. Благодаря работам в области оптимального раскроя основоположника теории линейного программирования лауреата Нобелевской премии академика Л.В. Канторовича задачу оптимального раскроя можно назвать классической прикладной оптимизационной задачей.
После того как вы выполните задания, вы будете уметь формулировать и использовать для экономического анализа следующие понятия:
• способ раскроя (рациональный и оптимальный);
• интенсивность использования рациональных способов раскроя.
Модели
Большинство материалов, используемых в промышленности, поступает на производство в виде стандартных форм. Непосредственное использование таких материалов, как правило, невозможно. Предварительно их разделяют на заготовки необходимых размеров. Это можно сделать, используя различные способы раскроя материала.Задача оптимального раскроя состоит в том, чтобы выбрать один или несколько способов раскроя материала и определить, какое количество материала следует раскраивать, применяя каждый из выбранных способов. Задачи такого типа возникают в металлургии и машиностроении, лесной, лесообрабатывающей, легкой промышленности.
Выделяют два этапа решения задачи оптимального раскроя. На первом этапе определяются рациональные способы раскроя материала, на втором — решается задача линейного программирования для определения интенсивности использования рациональных способов раскроя.
Определение рациональных способов раскроя материала.
В задачах оптимального раскроя рассматриваются так называемые рациональные (оптимальные по Парето) способы раскроя. Предположим, что из единицы материала можно изготовить заготовки нескольких видов. Способ раскроя единицы материала называется рациональным (оптимальным по Парето), если увеличение числа заготовок одного вида возможно только за счет сокращения числа заготовок другого вида.
Пусть k — индекс вида заготовки, k = 1. q; i — индекс способа раскроя единицы материала, i = 1. р; аik — количество (целое число) заготовок вида k, полученных при раскрое единицы материала
2. Определение интенсивности использования рациональных способов раскроя.
k —индекс вида заготовки, k = 1, . q;
i — индекс способа раскроя единицы материала, i = 1. р;
аijk — количество (целое число) заготовок вида k, полученных при раскрое единицы j-го материала i-м способом;
bk — число заготовок вида k в комплекте, поставляемом заказчику;
dj — количество материала j-го вида;
xji — количество единицу j-го материала, раскраиваемых по i-му способу (интенсивность использования способа раскроя);
cji — величина отхода, полученного при раскрое единицы j-го материала по i-му способу;
у — число комплектов заготовок различного вида, поставляемых заказчику.
Модель А раскроя с минимальным расходом материалов:
Здесь (1) — целевая функция (минимум количества используемых материалов);
(2) — система ограничений, определяющих количество заготовок, необходимое для выполнения заказа;
(3) — условия неотрицательности переменных.
Специфическими для данной области приложения модели линейного программирования являются ограничения (2).
Модель В раскроя с минимальными отходами:
Здесь (4) — целевая функция (минимум отходов при раскрое материалов);
(5) — система ограничений, определяющих количество заготовок, необходимое для выполнения заказа;
(6) — условия неотрицательности переменных.
Модель С раскроя с учетом комплектации:
Здесь (7) — целевая функция (максимум комплектов, включающих заготовки различных видов);
(8) — ограничения по количеству материалов;
(9) — система ограничений, определяющих количество заготовок, необходимое для формирования комплектов;
(10) — условия неотрицательности переменных.
Специфическими для данной области приложения модели линейного программирования являются ограничения (9).
Примеры
Пример 1. Способы раскроя металлического стержня.
Определите все рациональные способы раскроя металлического стержня длиной 100 см на заготовки трех типов: длиной 20, 30 и 50 см. Укажите величину отходов для каждого способа.
Решение. Для данного материала и указанных заготовок существует семь различных рациональных способов раскроя. Все они приведены в следующей таблице:
Пример 2. Способы раскроя куска кожи.
Определите все рациональные способы раскроя прямоугольного куска кожи размером 100 х 60 см на квадратные заготовки со сторонами 50,40 и 20 см и укажите величину отходов для каждого способа.
Пример 3. Изготовление парников из металлических стержней.
При изготовлении парников используется материал в виде металлических стержней длиной 220 см. Этот материал разрезается на стержни длиной 120, 100 и 70 см. Для выполнения заказа требуется изготовить 80 стержней длиной 120 см, 120 стержней длиной 100 см и 102 стержня длиной 70 см.
1. Сколько существует рациональных способов раскроя?
2. Какое минимальное количество материала следует разрезать, чтобы выполнить заказ?
3. Сколько способов раскроя следует использовать при выполнении заказа?
Вопросы
Вопрос 1. Способ раскроя называется рациональным, если:
1) он является безотходным;
2) он обеспечивает минимум отходов;
3) отходы меньше любой из заготовок;
4) он позволяет получить наибольшее число заготовок;
5) нет другого способа, дающего не меньше заготовок каждого типа.
Вопрос 2. Рассматривается задача оптимального раскроя деревянных брусьев на заготовки для строительства дома. Длина брусьев измеряется в сантиметрах. В соответствующей модели линейного программирования неизвестными являются интенсивности рациональных способов раскроя материала, значения которых измеряется в штуках. В качестве критерия рассматривается минимум отходов. В каких единицах измеряется коэффициент целевой функции?
1) шт.; 2) см; 3) шт./см; 4) см/шт.;
5) безразмерная величина.
Вопрос 3. Рассматривается задача оптимального раскроя кожи для пошива перчаток. В соответствующей модели линейного программирования учитывается ограничение на количество материала. Правая часть ограничения измеряется в штуках кожи. Максимизируется количество пар пошитых перчаток. В каких единицах измеряется двойственная оценка ресурсного ограничения?
1) шт.; 2) пара; 3) пара/шт.; 4) шт./пара; 5) безразмерная величина.
Вопрос 4. Сколько существует рациональных способов раскроя металлического стержня длиной 100 см на стержни длиной 50, 20 и 10 см?
1) более десяти; 2) десять; 3) девять;
4) восемь; 5) менее восьми.
Вопрос 5. Какое из следующих утверждений является верным?
1) безотходный способ раскроя является рациональным;
2) безотходный способ раскроя может быть рациональным;
3) безотходный способ раскроя не является рациональным;
4) рациональный способ раскроя является безотходным;
5) рациональный способ раскроя не является безотходным.
Задачи
Задача 1. Из прямоугольного листа железа размером 100 х 60 см необходимо изготовить квадратные заготовки со сторонами 50,40 и 20 см. Эти заготовки нужны в качестве перегородок при изготовлении пластмассовых коробок для хранения инструментов. Чтобы сделать одну коробку, нужно иметь четыре заготовки со стороной 50 см, шесть заготовок со стороной 40 см и двенадцать — со стороной 20 см. На складе находится 100 листов материала.
1. Сколько существует рациональных способов раскроя?
2. Какое максимальное количество коробок можно изготовить при условии, что оставшиеся заготовки можно использовать для следующей партии коробок?
3. Сколько рациональных способов раскроя следует использовать?
4. Сколько листов материала нужно, чтобы изготовить одну коробку?
Задача 2. Существует три рациональных способа раскроя единицы материала А на заготовки трех типов. Эти же заготовки могут быть получены двумя рациональными способами при раскрое единицы материала В. Количество заготовок, получаемых каждым из этих способов, показано в следующей таблице:
Заготовки используются для производства бытовой техники. В комплект поставки входят четыре заготовки первого типа, три заготовки второго типа и семь — третьего типа. На складе имеется 100 единиц материала А и 300 единиц материала В.
1. Сколько рациональных способов раскроя следует использовать?
2. Какое максимальное число комплектов заготовок можно изготовить из имеющегося материала в предположении, что оставшиеся заготовки можно использовать при выполнении следующего заказа?
3. Сколько единиц материала А следует раскраивать третьим способом?
4. Какое максимальное число комплектов заготовок можно изготовить из имеющегося материала, если число заготовок второго типа в комплекте увеличится до семи?
Задача 3. При раскрое деталей для производства единственного изделия на швейной фабрике используются два артикула ткани. Ширина ткани 1 м. Изделие собирается из двух деталей, причем каждая из них может быть получена путем раскроя ткани любого типа. Ткани можно раскраивать тремя способами, количество деталей каждого вида, полученных из одного погонного метра ткани, указано в следующей таблице:
Ткани 1 поступает на фабрику в 2 раза больше (по длине), чем ткани 2. Количество готовых изделий должно быть максимальным.
1. Сколько способов раскроя ткани 1 следует использовать?
2. Какая часть (в %) ткани 1 должна быть раскроена способом 1?
3. На сколько (в %) изменится выход готовых изделий по сравнению с первоначальным, если на фабрику будет поступать равное количество обеих тканей?
Задача 4. На производство поступила партия стержней длиной 250 и 190 см. Необходимо получить 470 заготовок длиной 120 см и 450 заготовок длиной 80 см. Отходы должны быть минимальны.
1. Какое количество стержней длиной 250 см надо разрезать?
2. Какое количество стержней длиной 190 см надо разрезать?
3. Какова величина отходов (в см)?
4. Оказалось, что количество стержней длиной 250 см ограничено и равно 200 шт. Какое количество стержней длиной 190 см надо разрезать в этом случае?
5. На сколько при этом увеличатся отходы (в см)?
Задача 5. Завод заключил договор на поставку комплектов стержней длиной 18, 23 и 32 см. Причем количество стержней разной длины в комплекте должно быть в соотношении 1:5:3. На сегодняшний день имеется 80 стержней длиной по 89 см. Как их следует разрезать, чтобы количество комплектов было максимальным?
1. Сколько существует рациональных способов раскроя?
2. Сколько комплектов стержней будет выпущено?
3. Какова при этом величина отходов (в см)?
Источник
Рациональный способ раскроя является безотходным
(3) — условия неотрицательности переменных.
Специфическими для данной области приложения модели линейного программирования являются ограничения (2).
Модель В раскроя с минимальными отходами:
Здесь (4) — целевая функция (минимум отходов при раскрое материалов);
(5) — система ограничений, определяющих количество заготовок, необходимое для выполнения заказа;
(6) — условия неотрицательности переменных.
Модель С раскроя с учетом комплектации:
Здесь (7) — целевая функция (максимум комплектов, включающих заготовки различных видов);
(8) — ограничения по количеству материалов;
(9) — система ограничений, определяющих количество заготовок, необходимое для формирования комплектов;
(10) — условия неотрицательности переменных.
Специфическими для данной области приложения модели линейного программирования являются ограничения (9).
Пример 1. Способы раскроя металлического стержня.
Определите все рациональные способы раскроя металлического стержня длиной 100 см на заготовки трех типов: длиной 20, 30 и 50 см. Укажите величину отходов для каждого способа.
Решение. Для данного материала и указанных заготовок существует семь различных рациональных способов раскроя. Все они приведены в следующей таблице:
Пример 2. Способы раскроя куска кожи.
Определите все рациональные способы раскроя прямоугольного куска кожи размером 100 х 60 см на квадратные заготовки со сторонами 50,40 и 20 см и укажите величину отходов для каждого способа.
Решение. Для данного материала и указанных заготовок существует шесть различных рациональных способов раскроя:
Пример 3. Изготовление парников из металлических стержней.
При изготовлении парников используется материал в виде металлических стержней длиной 220 см. Этот материал разрезается на стержни длиной 120, 100 и 70 см. Для выполнения заказа требуется изготовить 80 стержней длиной 120 см, 120 стержней длиной 100 см и 102 стержня длиной 70 см.
1. Сколько существует рациональных способов раскроя?
2. Какое минимальное количество материала следует разрезать, чтобы выполнить заказ?
3. Сколько способов раскроя следует использовать при выполнении заказа?
Решение. Определяем все рациональные способы раскроя материала на заготовки. Таких способов оказывается пять:
Используем модель А для одного вида материала. Тогда хi — количество единиц материала, раскраиваемых по i-му способу.
Для ответа на второй и третий вопросы задачи получаем следующую модель линейного программирования с критерием «минимум общего количества используемого материала»:
Решая задачу, получаем следующий результат:
Ответы: 1. Пять способов. 2. 134 единицы материала. 3. Три из пяти рациональных способов раскроя.
Вопрос 1. Способ раскроя называется рациональным, если:
1) он является безотходным;
2) он обеспечивает минимум отходов;
3) отходы меньше любой из заготовок;
4) он позволяет получить наибольшее число заготовок;
5) нет другого способа, дающего не меньше заготовок каждого типа.
Вопрос 2. Рассматривается задача оптимального раскроя деревянных брусьев на заготовки для строительства дома. Длина брусьев измеряется в сантиметрах. В соответствующей модели линейного программирования неизвестными являются интенсивности рациональных способов раскроя материала, значения которых измеряется в штуках. В качестве критерия рассматривается минимум отходов. В каких единицах измеряется коэффициент целевой функции?
Источник