Растения как способ выделения

Способы выделения веществ у растений.

У растений, так же как у животных, выделение веществ может быть пассивным и активным. Пассивное выделение продуктов обмена веществ по градиенту концентрации называется экскрецией, активное выведение веществ — секрецией. В процессах секреции обязательно участие активного транспорта веществ, на что затрачивается метаболическая энергия.

Как и у животных, у растений различают три способа выделения веществ из клетки: мерокриновую, апокриновую и голокриновую секрецию.

1. Мерокриновый тип секреции включает в себя две разновидности : а) эккриновую (мономолекулярную) секрецию через мембраны, осуществляемую активными переносчиками или ионными насосами; б) гранулокриновую секрецию — выделение веществ в «мембранной упаковке», т. е. в пузырьках (везикулах), секрет которых освобождается наружу при взаимодействии пузырька с плазмалеммой или поступает во внутренние компартменты клетки (в вакуоль).

2. Апокриновая секреция осуществляется с отрывом вместе с секретом части цитоплазмы, например с отрывом головок у солевых волосков некоторых галофитов.

3. Голокриновой называется секреция, при которой в результате активного секреторного процесса вся клетка превращается в секрет. Примером может служить секреция слизи клетками корневого чехлика.

Процесс секреции у растений осуществляется специализированными клетками и тканями. Наряду с этим к секреции способна каждая растительная клетка, формирующая клеточную стенку. В мембранах всех клеток функционируют ионные насосы (Н+-помпа и др.) и механизмы вторичного активного транспорта.

У растений нет единой выделительной системы, свойственной животным. Выделяемые вещества могут накапливаться внутри клетки (в вакуолях), в специальных хранилищах (например, в смоляных ходах) или выносятся на поверхность растения.

Наиболее изученным механизмом эккриновой секреции являются ионные насосы, прежде всего Н+-помпа . Меньше известно о физиологии гранулокриновой (везикулярной) секреции. Для животных объектов установлено, что секреция с участием везикул аппарата Гольджи — сложный многоступенчатый процесс, осуществляющийся в два этапа: 1) транспорт везикул, 2) слияние их с плазмалеммой. На первом этапе секреторные пузырьки направленно перемещаются от АГ к определенным участкам клеточной мембраны с помощью микротрубочек и актиновых микрофиламентов, для чего необходим АТР. На втором этапе везикулы слипаются (адгезия) с плазмалеммой при участии специальных белков (гликопротеинов типа лектина) и Са2 + . В результате происходит кластеризация адгезивного комплекса, обнажение липидных фаз в области контакта, слияние липидных бислоев везикулы и клеточной мембраны, прорыв контакта и расширение прорыва. Все это приводит к встраиванию мембраны секреторного пузырька в клеточную мембрану и выходу секрета на наружную поверхность плазмалеммы. На втором этапе секреторного процесса клетке необходим Са2 + . Роль кальция многообразна: участие в активации актомиозинового комплекса, снижение поверхностного отрицательного заряда контактирующих мембран, Са2+-зависимое фосфорилированием бранных белков с участием кальмодулина . Молекулярный механизм везикулярной секреции в растительных клетках не изучен. Однако известно, что и здесь необходим Саг + . По-видимому, процессы секреции у растений аналогичны тому, что известно для клеток животных.

Индукция поляризации у растений.

Важнейшее условие формообразования при развитии организма — поляризация биологических структур. Под полярностью подразумевают специфическую ориентацию процессов и структур в пространстве, приводящую к появлению морфофизиологических градиентов. Полярность определяет положений осей, обусловливающих форму клеток, органов и целого организма.

Полярность особенно наглядно представлена у растений, для которых характерна биполярная структура (главная ось: побег — корень). В физиологическом плане полярность проявляется у растений, в частности в процессах регенерации. У стеблевых и корневых черенков независимо от их положения в пространстве побеги развиваются с морфологически апикального (по отношению к верхушке стебля), а корни — с базального концов. Это объясняется тем, что ИУК, перемещаясь полярно, скапливается в морфологически нижнем конце черенка и индуцирует включение генетической программы корнеобразования.

Однако полярность не является изначальным и неизменно существующим свойством биологических объектов. У спор хвощей и папоротников полярность возникает лишь после определенных внешних воздействий, например, в условиях односторонне падающего света. При делении такой поляризованной споры освещенная сторона и соответствующая дочерняя клетка формируют заросток, а затененная -ризоид.

Механизм поляризации особенно подробно изучен у яйцеклетки бурой морской водоросли Fucus. До оплодотворения яйцеклетка фукуса лишена оболочки, ядро расположено в центре клетки и вначале не наблюдается сколько-нибудь заметной полярности в ее строении. После оплодотворения клетка опускается на дно, покрывается оболочкой и через некоторое время на ее нижней поверхности начинается образование ризоидного выступа. Первое деление яйцеклетки проходит в направлении, перпендикулярном образовавшейся оси. Верхняя клетка дает начало большей части таллома, нижняя — небольшой части таллома и ризоиду. По-видимому, сила гравитации в данном случае не представляет собой определяющего фактора в индуцировании полярности, так как при развитии яйцеклеток фукуса в темноте ризоиды могут расти в различных направлениях. При одностороннем освещении ризоид образуется с затененной стороны.

Читайте также:  Способы производства стали их сущность

Предполагается, что вследствие электрической поляризации яйцеклетки в ее плазмалемме происходит латеральное электрофоретическое перемещение липопротеиновых компонентов с положительным или отрицательным зарядом (L. F. Jaffe et al. 1977—1980). Эти компоненты (ионные каналы, насосы, ферменты и др.) затем закрепляются на полюсах клетки с помощью микрофиламентов и микротрубочек цитоскелета, что необратимо фиксирует возникшую первичную поляризацию и определяет главную ось тела растения. При последующем делении яйцеклетки (плоскость деления перпендикулярна оси поляризации) ядра в дочерних клетках попадают в совершенно разные условия, возникшие в поляризованной цитоплазме, и вследствие этого начинают поставлять неидентичную генетическую информацию. Таким образом происходит дифференциация клеток.

Поляризация клеток у многоклеточных организмов вызывается самыми разными причинами: физико-химическими градиентами (величины осмотического давления и pH, концентрации 02, С02 и т. д.), гормональными, электрическими и трофическими градиентами, контактами с соседними клетками (контактная поляризация), механическим давлением и натяжением. Особое значение для целостности растения имеют те градиенты, которые создаются доминирующими центрами побега и корня — их верхушками. Колебательный характер этих градиентов — важное условие поддержания временной целостности растительного организма.

Вопрос

Теория «эффекта положения».

Каждая клетка многоклеточного организма подвергается определенным воздействиям со стороны физических, химических и физиологических градиентов и влиянию соседних клеток. В результате в клетках реализуются именно те потенции (дифференцировка, функциональная активность), которые соответствуют окружающим условиям. Эта теория получила название «эффекта положения».

Для того чтобы адекватно отвечать на изменение условий и сигналы, поступающие из окружающей среды (свойство раздражимости), каждая клетка постоянно тестирует (проверяет) свое местоположение.

Дж. Боннер (1965) для объяснения механизмов управления дифференцировкой предложил принцип морфогенетических тестов. Апикальная клетка делится в поперечном направлении на две дочерние. Каждая из них «определяет», является ли она верхушечной. Для апикальной клетки результатом будет продолжение деления, а вторая, субапикальная, тестирует величину группы окружающих ее клеток. Если группа мала, включается подпрограмма деления, функционирующая до достижения определенного программой количества клеток в этом участке апекса. После образования необходимого числа клеток каждая из них тестирует свое положение у поверхности или в глубине клеточной популяции. Если анализ показывает, что какие-то клетки находятся на поверхности группы, включается программа их дифференцировки в клетки эпидермальные. Остальные клетки, оказавшиеся не на поверхности, проводят тест на положение в глубине группы, в результате чего у расположенных в самой глубине индуцируется подпрограмма дифференцировки в клетки ксилемы, а у находящихся менее глубоко — подпрограмма образования флоэмы. Клетки, занимающие промежуточное положение, становятся камбиальными, т. е. делятся по замкнутому циклу, формируя элементы ксилемы и флоэмы.

У растений найдены рецепторы фитогормонов, позволяющие клеткам оценивать их состав и количество в окружающей среде. При культивировании растительных клеток в искусственной среде установлен «эффект массы». Единичная изолированная клетка редко переходит к делению. Чем гуще высеяны клетки (например, на поверхность питательного агара), тем большее их число начинает делиться. Если яйцеклетки фукуса помещены близко друг от друга, то ризоиды образуются в сторону центра группы («групповой эффект»). Это явление можно объяснить тем, что каждая яйцеклетка синтезирует и выделяет в окружающую среду ИУК, и концентрация этого фитогормона в центре группы оказывается более высокой, чем снаружи. Как уже говорилось, ауксин индуцирует у яйцеклеток фукуса образование ризоидов. Таким образом, тест на величину труппы клеток может быть опосредован концентрацией фитогормонов или других физиологически активных веществ, выделяемых клетками.

Читайте также:  Укажите способ обеспечения исполнения обязательств

Прямое окисление сахаров.

Некоторые организмы способны окислять и нефосфорилированную глюкозу. Этот путь прямого окисления сахаров обнаружен у некоторых бактерий, грибов и животных, а также у фотосинтезирующих морских водорослей.

Из мицелия плесневого гриба Aspergillus niger может быть выделен ферментный препарат, способный окислять глюкозу в глюконовую кислоту.

Окисление глюкозы до глюконовой кислоты осуществляется— глюкооксидазой, содержащей в своем составе две молекулы FAD и 15% (от ее массы) углеводов.

Фермент отнимает два атома водорода от глюкозы, находящейся в пиранозной форме, и переносит его на молекулярный кислород. Перед окислением происходит превращение (мутаротация) ос-глюкозы в ?-форму, Первичный продукт окисления — лактон глюконовой кислоты, который, гидратируясь неферментативным путем, превращается в глюконовую кислоту:

Если в процессе дыхания прямому окислению подвергаются и другие сахара, кроме глюкозы, то образуется целое семейство кислот, названных кислотами прямого (первичного) окисления сахаров. Глюкозооксидаза способна окислять только D-глюкозу. В этом отношении она отличается от D-гексозооксидазы, способной наряду с D-глюкозой окислять и другие гексозы (мальтозу, лактозу, целлобиозу) с образованием соответствующих альдоновых кислот.

Введенные в растительные клетки, эти кислоты используются в процессе дыхания. Из глюкуроновой и галактуроновой кислот в клетках может образоваться аскорбиновая кислота (витамин С).

Источник

Выделительная функция растений

Выделительная активность растений является проявлением фундаментальных свойства всех живых организмов в виду необходимости иметь возможность обмена веществами и энергией с окружающей средой.

Секреторная функция свойственна всем живым организмам. На уровне клетки выделение продуктов метаболизма вызывается необходимостью удаления соединений, не являющихся нужными в данный момент для функционирования цитоплазмы.

В отличие от подвижных животных растения как прикрепленные к субстрату организмы обладают большей химической защитой в виде огромного разнообразия экскретируемых веществ, главным образом, вторичных метаболитов. Это способствует адаптации к окружающей их “живой“ среде – жизни среди других организмов в биоценозе. Современное состояние вопроса о выделении метаболитов растениями характеризуется стремлением познать химическую природу экскретирумых соединений и тонкие механизмы их действия. Эти знания необходимы для правильной оценки роли этих веществ в жизнедеятельности самого организма и формирования окружающей его среды.

Все клетки растения способны выделять в окружающую среду продукты метаболизма. Выделение веществ или происходит в результате нормальной секреторной деятельности организма, или является следствием воздействия стрессовых факторов. Первый тип выделительной функции представляет собой обычное физиологическое явление. У многих растений в процессе эволюции выработались специализированные секреторные системы внутритканевой и внешней секреции, позволяющие наиболее эффективно экскретировать продукты вторичного обмена. Второй тип выделительной деятельности возникает в экстремальных условиях и отличается от первого наличием в выделениях «стрессовых», т. е. несвойственных обычному набору выделяемых веществ и часто отсутствием специализированных выделительных структур.

Нормальная секреторная функция, свойственная любой растительной клетке, обусловлена необходимостью удаления из цитоплазмы и накопления в вакуоли продуктов вторичного обмена как веществ запаса или просто избыточных, так и «защитных» метаболитов, токсичных для патогенов или травоядных животных. Кроме того, в результате секреции из клетки выводятся наружу токсичные метаболиты или продукты специализированных секреторных клеток, выполняющих разнообразные функции. Внутриклеточная секреция является не только обычной и необходимой функцией в жизнедеятельности каждой растительной клетки, но и исходным этапом секреторной деятельности многоклеточного растительного организма с участием специализированных систем.У неспециализированных клеток секреторные процессы выражены слабее, чем у специализированных секреторных клеток.

Компоненты выделений — это продукты первичного или вторичного метаболизма. В специализированных секреторных структурах часто преобладают продукты вторичного обмена: альдегиды, терпеноиды, флавоноиды и др. Многие из них образуются в ответвлениях основных метаболических путей: шикиматном (флавоноиды, фенолы, алкалоиды), мевалонатном (терпены) и др. Продукты, выделяемые наружу, могут быть газообразными (кислород, озон,углекислый газ,водород,угарный газ и разнообразные летучие терпены, составляющие ароматы растений), жидкими ( терпены и фенолы смол, сахара нектара и т.д.), твердыми (кристаллы солей, фенолов и др. веществ). Жизнь на Земле невозможна без выделения кислорода, который является необходимым для дыхания живых организмов, а также углекислого газа, используемого растениями в процессе фотосинтеза для выработки кислорода. Большинство других веществ экскретов участвуют во взаимодействии растений с другими организмами в биоценозах.

Читайте также:  Способ питания саркодовых автотрофный

В растениях имеются особые клетки (идиобласты), секреторные процессы в которых являются основными, и это – самые примитивные секреторные образования, ближе всего относящихся к неспециализированным паренхимным клеткам. В многоклеточном растительном организме, кроме идиобластов, имеются сложные специализированные органы выделения, состоящие из совокупности клеток. По происхождению и расположению такие секреторные структуры могут быть разделены 1. на внутренние (которые локализованы внутри растения и секретируют вещества во внутриклеточные или межклеточные пространства ) и на 2. внешние, что располагаются на поверхности растения и экскретируют секрет во внешнюю среду. На фотографии показаны секреторные волоски листа гибиска, флуоресцируюшие в ультрафиолетовом свете.

Выделение веществ имеет разное значение. В некоторых случаях эти функции очевидны — выделение нектара для насекомоопыляемых растений, ловчая слизь и пищеварительные соки в железках насекомоядных растений. Выделения солевых железок и гидатод (структуры, выделяющие воду и водные растворы) имеют приспособительное значение как способ освобождения от избытка солей и воды. О роли выделяемых вторичных соединений известно значительно меньше. Полагают, что им принадлежит важная роль во взаимоотношениях растений и животных. Вторичные экзометаболиты могут выполнять роль аттрактантов или обонятельных и вкусовых репеллентов. Выделения, обладающие бактериостатическим или бактерицидным действием, играют роль в иммунитете растений и оздоравливают среду вокруг растения.

Помимо нормальной секреции неповрежденными растениями, наблюдается выделение веществ под влиянием стрессовых факторов — резких колебаний температуры, освещенности, загрязнения среды и др. Состав и количество «стрессовых» выделений значительно отличаются от обычной экскреции.

Количество стрессовых метаболитов в выделениях часто превышает уровень нормальных метаболитов. Многие из них являются токсичными для человека и других млекопитающих и могут быть причинами серьезных отравлений и заболеваний, что необходимо учитывать при использовании растений в качестве пищевых продуктов.

Продукты выделительной деятельности, как в нормальных, так и стрессовых условиях обладают биологической активностью. Однако интактные (неповрежденные) растения выделяют столь малые количества веществ, что они не могут вызывать значительных изменений в росте других растений, зато их достаточно для выполнения сигнальной функции или функции узнавания. Например, компоненты нектара в ничтожных концентрациях распознаются насекомыми- опылителями.Напротив, стрессовые метаболиты благодаря относительно высокой концентрации и токсичности вызывают более мощные биологические нарушения, как у животных, так и у растений и микроорганизмов, затрагивая структурное и функциональное состояния клеток, что отражается в изменениях роста или приводит к деструктивным изменениям и гибели. Стрессовым метаболитам, по-видимому, принадлежит основная роль явлениях биохимической конкуренции в фитоценозе. Однако в природных условиях нелегко провести грань между нормальными метаболитами и стрессовыми. Стресс развивается постепенно и захватывает не все клетки сразу. Разница обнаруживается лишь в крайних экстремальных случаях, например в условиях засушливого или, наоборот, переувлажненного климата, а также в зоне тропической растительности, где биохимическое взаимовлияние растений проявляется наиболее ярко.

Сведения о составе растительных выделений, их роли в жизни самого растения и взаимодействии его с другими организмами имеют важное значение для развития фундаментальных и прикладных наук. Они способствуют пониманию процессов жизнедеятельности растительного организма, устойчивости к экстремальным факторам среды, защиты от патогенов, осуществления репродуктивной функции. Эти сведения могут быть полезными для ботанической науки — хемосистематики, которая использует знания химического состава растительных экскретов как дополнительный систематический признак. Наконец, современная медицинская наука вводит понятие «медицинская ботаника», в которой химический состав и биологические эффекты выделений растений являются фундаментом для производства лекарств природного происхождения, столь необходимых в век химии и стрессовых воздействий. Развитие биотехнологии предусматривает производство новых природных продуктов, среди которых и продукты выделительной деятельности растений — природные инсектициды, гербициды, фунгициды

Рощина В. Д., Рощина В. В. 1989. Выделительная функция высших растений. М., Наука. 214 с.

Roshchina, V.V. and Roshchina V.D. 1993. The Excretory Function of Higher Plants. Springer, Berlin 384 pp.

Рощина В. В., Рощина В. Д., 2012. Выделительная функция высших растений. Saarbrucken, LAP LAMBERT Academic Publishing GmbH, 476 с

Источник

Оцените статью
Разные способы