- Расстояние от точки до прямой способом замены плоскостей
- Определение расстояния от точки до прямой
- Метод замены плоскостей проекций
- Замена одной плоскости проекции
- Замена двух плоскостей проекций
- Использование метода замены при решении задач
- Определение расстояния между параллельными плоскостями
- Расстояние от точки до прямой способом замены плоскостей
Расстояние от точки до прямой способом замены плоскостей
Изменение взаимного положения изучаемого объекта и плоскостей проекций достигается путем замены одной из плоскостей П1 или П2 новой плоскостями П4 (рис. 148). Новая плоскость всегда выбирается перпендикулярно оставшейся плоскости проекций.
Для решения некоторых задач может потребоваться двойная замены плоскостей проекций (рис. 149). Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемо й проекции точки до заменяемой оси.
Задача 1 : Определить натуральную величину отрезка АВ прямой общего положений (рис. 148). Из свойства параллельного проецирования известно, что отрезок проециру ется на плоскость в натуральную величину, если он параллелен этой плоскости.
Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1 П2 в систему П1 П4 , причем в новой системе плоскостей проекция отрезка А4 В4 будет натуральной величиной отрезка АВ.
Рисунок 148. Определение натуральной величины отрезка прямой методом замены плоскостей проекций
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Задача 2 : Определить расстояние от точки А до прямой общего положения, заданной отрезком ВС (рис. _ 149 ) .
Источник
Определение расстояния от точки до прямой
Расстояние от точки до прямой – это длина перпендикуляра, опущенного из точки на прямую. В начертательной геометрии она определяется графическим путем по приведенному ниже алгоритму.
- Прямую переводят в положение, в котором она будет параллельна какой-либо плоскости проекции. Для этого применяют методы преобразования ортогональных проекций.
- Из точки проводят перпендикуляр к прямой. В основе данного построения лежит теорема о проецировании прямого угла.
- Длина перпендикуляра определяется путем преобразования его проекций или с использованием способа прямоугольного треугольника.
На следующем рисунке представлен комплексный чертеж точки M и прямой b, заданной отрезком CD. Требуется найти расстояние между ними.
Согласно нашему алгоритму, первое, что необходимо сделать, это перевести прямую в положение, параллельное плоскости проекции. При этом важно понимать, что после проведенных преобразований фактическое расстояние между точкой и прямой не должно измениться. Именно поэтому здесь удобно использовать метод замены плоскостей, который не предполагает перемещение фигур в пространстве.
Результаты первого этапа построений показаны ниже. На рисунке видно, как параллельно b введена дополнительная фронтальная плоскость П4. В новой системе (П1, П4) точки C»1, D»1, M»1 находятся на том же удалении от оси X1, что и C», D», M» от оси X.
Выполняя вторую часть алгоритма, из M»1 опускаем перпендикуляр M»1N»1 на прямую b»1, поскольку прямой угол MND между b и MN проецируется на плоскость П4 в натуральную величину. По линии связи определяем положение точки N’ и проводим проекцию M’N’ отрезка MN.
На заключительном этапе нужно определить величину отрезка MN по его проекциям M’N’ и M»1N»1. Для этого строим прямоугольный треугольник M»1N»1N0, у которого катет N»1N0 равен разности (YM1 – YN1) удаления точек M’ и N’ от оси X1. Длина гипотенузы M»1N0 треугольника M»1N»1N0 соответствует искомому расстоянию от M до b.
Второй способ решения
- Параллельно CD вводим новую фронтальную плоскость П4. Она пересекает П1 по оси X1, причем X1∥C’D’. В соответствии с методом замены плоскостей определяем проекции точек C»1, D»1 и M»1, как это изображено на рисунке.
- Перпендикулярно C»1D»1 строим дополнительную горизонтальную плоскость П5, на которую прямая b проецируется в точку C’2 = b’2.
- Величина расстояния между точкой M и прямой b определяется длиной отрезка M’2C’2, обозначенного красным цветом.
Источник
Метод замены плоскостей проекций
Для решения целого ряда задач начертательной геометрии наиболее рациональным является метод замены плоскостей проекций. Например, с его помощью можно определить натуральную величину плоской фигуры, расстояние между параллельными прямыми, опорные точки пересечения поверхностей.
Замена одной плоскости проекции
Сущность метода заключается в замене одной из плоскостей проекций на дополнительную плоскость, выбранную так, чтобы в новой системе плоскостей решение поставленной задачи значительно упрощалось. Положение фигур в пространстве при этом не меняется.
Рассмотрим на примере точек A и B, как осуществляются построения на комплексном чертеже. Изначально точка A находится в системе плоскостей П1, П2. Введем дополнительную горизонтальную пл. П4. Она будет перпендикулярна фронтальной плоскости проекций П2 и пересечет её по оси x1. Эту ось необходимо провести на комплексном чертеже с учётом цели построения. Здесь мы расположили её произвольно.
В новой системе плоскостей положение точки A» не изменится. Чтобы найти точку A’1, которая является проекцией т. А на плоскость П4, проведем из A» перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Ax1А’1, равный отрезку AxA’.
Данные построения основаны на равенстве ординат точек A’ и А’1. Действительно, в системе плоскостей П1, П2 и в системе П2, П4 точка A удалена от фронтальной плоскости проекций П2 на одно и то же расстояние.
Теперь осуществим перевод точки B в новую систему плоскостей П1, П4 (рис. ниже). Для этого введем произвольную фронтальную пл. П4, которая будет перпендикулярна горизонтальной плоскости проекций П1 и пересечет её по оси x1.
В системе П1, П4 положение точки B’ останется неизменным. Чтобы найти точку B»1, проведем из B’ перпендикуляр к оси x1. На этом перпендикуляре от точки его пересечения с осью x1 отложим отрезок Bx1B»1 равный отрезку BxB». Описанные построения основаны на равенстве аппликат точек B» и B»1.
Замена двух плоскостей проекций
Иногда для решения поставленной задачи требуется замена двух плоскостей проекций (рис. ниже). Пусть A’ и A» – исходные проекции точки A, находящейся в системе пл. П1, П2. Введем первую дополнительную плоскость П4 и определим новую горизонтальную проекцию A’1 точки A, как это было описано ранее.
Для осуществления второй замены плоскости проекций будем рассматривать систему пл. П2, П4 в качестве исходной. Введем новую фронтальную плоскость П5 перпендикулярно горизонтальной пл. П4. Для этого на произвольном месте чертежа проведем ось x2 = П4 ∩ П5. Из точки A’1, положение которой останется неизменным, восстановим перпендикуляр к оси x2. На нем от точки Ax2 отложим отрезок Ax2A»1 равный отрезку A»Ax1.
Использование метода замены при решении задач
Владея методом замены применительно к одной точке, можно построить дополнительные проекции любых фигур, поскольку они представляют собой множество точек. На рисунке ниже показан перевод отрезка AB в частное положение. Новая плоскость П4 проведена параллельно AB, поэтому отрезок проецируется на неё в натуральную величину.
На следующем рисунке показана плоскость общего положения α, заданная следами. Переведем её в новую систему плоскостей П1, П4 так, чтобы α занимала проецирующее положение. Для этого перпендикулярно горизонтальному следу h0α введем дополнительную фронтальную плоскость П4.
Новый фронтальный след f0α1 строится по двум точкам. Одна из них, Xα1, лежит на пересечении h0α с осью x1. Дополнительно возьмем точку N, принадлежащую α, и укажем её фронтальную проекцию N»1 на плоскости П4.
Определение расстояния между параллельными плоскостями
Параллельные плоскости α и β расположены так, как показано на рисунке. Чтобы найти расстояние между ними, необходимо из произвольной точки A, взятой на пл. α, опустить перпендикуляр AB на пл. β и определить его настоящую длину.
Для уменьшения количества геометрических построений α и β предварительно переводятся в проецирующее положение с помощью метода замены плоскостей проекций. Вспомогательная точка M используется для определения направления следов f0β1 и f0α1, параллельных друг другу.
Источник
Расстояние от точки до прямой способом замены плоскостей
Изменение взаимного положения изучаемого объекта и плоскостей проекций достигается путем замены одной из плоскостей П1 или П2 новой плоскостями П4 (рис. 148). Новая плоскость всегда выбирается перпендикулярно оставшейся плоскости проекций.
Для решения некоторых задач может потребоваться двойная замены плоскостей проекций (рис. 149). Последовательный переход от одной системы плоскостей проекций к другой необходимо осуществлять, выполняя следующее правило: расстояние от новой проекции точки до новой оси должно равняться расстоянию от заменяемо й проекции точки до заменяемой оси.
Задача 1 : Определить натуральную величину отрезка АВ прямой общего положений (рис. 148). Из свойства параллельного проецирования известно, что отрезок проециру ется на плоскость в натуральную величину, если он параллелен этой плоскости.
Выберем новую плоскость проекций П4, параллельно отрезку АВ и перпендикулярно плоскости П1. Введением новой плоскости, переходим из системы плоскостей П1 П2 в систему П1 П4 , причем в новой системе плоскостей проекция отрезка А4 В4 будет натуральной величиной отрезка АВ.
Рисунок 148. Определение натуральной величины отрезка прямой методом замены плоскостей проекций
| | | |
| |||
| |||
| |||
а) модель | б) эпюр | ||
Задача 2 : Определить расстояние от точки А до прямой общего положения, заданной отрезком АВ (рис. _ 149 ) .
Источник